RF Toolbox™
User's Guide

7

MATLAB

R2020b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

RF Toolbox™ User's Guide
© COPYRIGHT 2004-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

June 2004
August 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 14)
Revised for Version 1.0.1 (Release 14+)
Revised for Version 1.1 (Release 14SP2)
Revised for Version 1.2 (Release 14SP3)
Revised for Version 1.3 (Release 2006a)
Revised for Version 2.0 (Release 2006b)
Revised for Version 2.1 (Release 2007a)
Revised for Version 2.2 (Release 2007b)
Revised for Version 2.3 (Release 2008a)
Revised for Version 2.4 (Release 2008b)
Revised for Version 2.5 (Release 2009a)
Revised for Version 2.6 (Release 2009b)
Revised for Version 2.7 (Release 2010a)
Revised for Version 2.8 (Release 2010b)
Revised for Version 2.8.1 (Release 2011a)
Revised for Version 2.9 (Release 2011b)
Revised for Version 2.10 (Release 2012a)
Revised for Version 2.11 (Release 2012b)
Revised for Version 2.12 (Release 2013a)
Revised for Version 2.13 (Release 2013b)
Revised for Version 2.14 (Release 2014a)
Revised for Version 2.15 (Release 2014b)
Revised for Version 2.16 (Release 2015a)
Revised for Version 2.17 (Release 2015b)
Revised for Version 3.0 (Release 2016a)
Revised for Version 3.1 (Release 2016b)
Revised for Version 3.2 (Release 2017a)
Revised for Version 3.3 (Release 2017b)
Revised for Version 3.4 (Release 2018a)
Revised for Version 3.5 (Release 2018b)
Revised for Version 3.6 (Release 2019a)
Revised for Version 3.7 (Release 2019b)
Revised for Version 3.8 (Release 2020a)
Revised for Version 4.0 (Release 2020b)

Contents

1]

2|

RF Objects

RFDataObjects e 1-2
OVEIVIEW . o ottt e 1-2
Typesof Data 1-2
Available Data Objects 1-2
Data Object Methods 1-3

RF Circuit Objects i 1-4
Overview of RF Circuit Objects 1-4
Components Versus Networks 1-4
Available Components and Networks 1-5
Circuit Object Methods i e 1-6

RF Model Objects i 1-8
Overview of RF Model Objects 1-8
Available Model Objects i 1-8
Model Object Methods 1-8

RF Network Parameter Objects 1-9
Overview of Network Parameter Objects 1-9
Available Network Parameter Objects 1-9
Network Parameter Object Functions 1-9
Model an RF Component

Create RFObjects 2-2
ConstructaNew Object i, 2-2
Copy an Existing Object 2-3
Specify or Import ComponentData 2-4
RF Object Properties i 2-4

Set Property Values 2-4
Import Property Values from Data Files 2-6

Use Data Objects to Specify Circuit Properties 2-8
Retrieve Property Values 2-9
Reference Properties Directly Using Dot Notation 2-11
Specify Operating Conditions 2-12
Available Operating Conditions 2-12

Set Operating Conditions i, 2-12
Display Available Operating Condition Values 2-12

Contents

Process File Data for Analysis 2-13

Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters 2-13
Extract M-Port S-Parameters from N-Port S-Parameters 2-14
Cascade N-Port S-Parametersovvviiiinnnnnnnnnn.. 2-15
Analyze and Plot RF Components 2-17
Analyze Networks in the Frequency Domain 2-17
Visualize Component and Network Data 2-17
Compute and Plot Time-Domain Specifications 2-23
Export Component DatatoaPFile 2-26
Available Export Formats 2-26
How to Export Object Data i, 2-26
Export ObjectData i e 2-27
Basic Operations with RFObjects 2-28

3|

Model RF Objects Using Verilog-A 3-2
OVEIVIEW . o o 3-2
Behavioral Modeling Using Verilog-A 3-2
Supported Verilog-AModels 3-2

Export a Verilog-AModel 3-4
Represent a Circuit Object with a Model Object 3-4
Write a Verilog-AModule 3-5

The RF Design and Analysis Tool

4

The RF Design and AnalysisTool 4-2
What is the RF Design and AnalysisApp? ..., 4-2
Open the RF Design and AnalysiSAPDo iiiii i 4-2
The RF Design and Analysis Window 4-2
The RF Design and Analysis App Workflow 4-3

Create and Import Circuits 4-5
Circuits in the RF Design and AnalysiSApp, 4-5
Create RF Components0 0., 4-5
Create RE Networkso s 4-7
Import RF Objects into the RF Design and AnalysisApp 4-11

Modify Component Data 4-14

Analyze Circuits 4-15

Export RFObjects i 4-18

Export Components and Networks 4-18
Export to the Workspace 4-18
ExporttoaFile 4-19
Manage Circuits and Sessions 4-21
Working with Circuits 4-21
Working with the RF Design and Analysis App Sessions 4-22
Model an RF Network 4-24
OVEIVIBW . ottt e e 4-24
Start the RF Design and AnalysisApp, 4-24
Create the Amplifier Network 4-24
Populate the Amplifier Network 4-25
Analyze the Amplifier Network 4-28
Export the Network to the Workspace 4-29

AMP File Format

S|

AMP File Data Sections 5-2
OVeIVIBW . .ttt 5-2
Denoting Commentsttt 5-2
Data Sections i 5-3
S, Y, or Z Network Parameters, 5-3
Noise Parameters i 5-4
Noise Figure Data i i 53-3
Power Data e 5-6
IP3 Data ..o e 5-8
Inconsistent Data Sections 5-9

6/

Determining Parameter Formats 6-2
Primary and Secondary Formats 6-2
Determining Formats for One Parameter 6-3
Determining Formats for Multiple Parameters 6-3

RF Toolbox Examples

Superheterodyne Receiver Using RF Budget Analyzer App 7-2

Visualizing RF Budget Analysis Over Bandwidth 7-16

viii

Contents

Bandpass Filter Response 7-24

MOS Interconnect and Crosstalk 7-30
Bandpass Filter Response Using RFCKT Objects 7-35
MOS Interconnect and Crosstalk Using RFCKT Objects 7-41
Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-

Port S-Parameters)t e 7-49
Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational

Function) e 7-53
Modeling a High-Speed Backplane (4-Port S-Parameters to Differential

TDRand TDT) e 7-60
Modeling a High-Speed Backplane (Rational Function to a Simulink®

Model) 7-63
Modeling a High-Speed Backplane (Rational Function to a Verilog-A

Module) e 7-66
Using 'NPoles' Parameter With rationalfit 7-70
Using 'Weight' Parameter With rationalfit 7-74
Using 'DelayFactor' Parameter With rationalfit 7-80
Data Analysis on S-parameters of RF Data Files 7-84
Writing S2P Touchstone® Files 7-94
Visualizing Mixer Spurs i 7-98
Finding Free IF Bandwidths 7-104
De-Embedding S-Parameters 7-113
Bisect S-Parameters of Cascaded Probes 7-116
Designing Matching Networks for Low Noise Amplifiers 7-120
Designing Matching Networks (Part 2: Single Stub Transmission Lines)

.. 7-130

Designing Broadband Matching Networks for Antennas 7-138
Designing Broadband Matching Networks (Part 2: Amplifier) 7-146
Impedance Matching of a Non-resonant(Small) Monopole 7-159
RF Circuit Objects 7-165

RFDataObjects i, 7-169

Design IF Butterworth Bandpass Filter 7-173
Passivity: Test, Visualize, and Enforce Passivity of rationalfit Output . 7-177
Design, Visualize and Explore Inverse Chebyshev filter -1 7-184
Design, visualize and explore Inverse Chebyshev filter -II 7-188
Design Matching Networks for Passive Multiport Network 7-193
Frequency Sweeping the RF Budget Analysis 7-202
Using Rational Object to Fit S-parameters 7-204
Design Two-Stage Low Noise Amplifier Using Microstrip Transmission
Line Matching Network 7-208
RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF
.. 7-215
Analysis of Coplanar Waveguide Transmission line in X band application 21

ix

RF Objects

* “RF Data Objects” on page 1-2

» “RF Circuit Objects” on page 1-4

* “RF Model Objects” on page 1-8

* “RF Network Parameter Objects” on page 1-9

1 =rr Objects

RF Data Objects

In this section...

“Overview” on page 1-2

“Types of Data” on page 1-2
“Available Data Objects” on page 1-2
“Data Object Methods” on page 1-3

Overview

RF Toolbox software uses data (rfdata) objects to store:

* Component data created from files or from information that you specify in the MATLAB®
workspace.

* Analyzed data from a frequency-domain simulation of a circuit object.

You can perform basic tasks, such as plotting and network parameter conversion, on the data stored
in these objects. However, data objects are primarily used to store data for use by other RF objects.

Types of Data

The toolbox uses RF data objects to store one or more of the following types of data:

* Network parameters

* Spot noise

* Noise figure

* Third-order intercept point (IP3)
* Power out versus power in

Available Data Objects

The following table lists the available rfdata object constructors and describes the data the
corresponding objects represent. For more information on a particular object, follow the link in the
table to the reference page for that object.

Constructor Description

rfdata.data Data object containing network parameter data

rfdata.ip3 Data object containing IP3 information

rfdata.mixerspur Data object containing mixer spur information from an
intermodulation table

rfdata.network Data object containing network parameter information

rfdata.nf Data object containing noise figure information

rfdata.noise Data object containing noise information

rfdata.power Data object containing power and phase information

1-2

RF Data Objects

Data Object Methods

The following table lists the methods of the data objects, the types of objects on which each can act,
and the purpose of each method.

Method Types of Objects Purpose
extract rfdata.data, Extract specified network parameters from a
rfdata.network circuit or data object and return the result in an
array
read rfdata.data Read RF data parameters from a file to a new or
existing data object.
write rfdata.data Write RF data from a data object to a file.

1-3

1 =rr Objects

RF Circuit Objects

1-4

In this section...

“Overview of RF Circuit Objects” on page 1-4
“Components Versus Networks” on page 1-4
“Available Components and Networks” on page 1-5

“Circuit Object Methods” on page 1-6

Overview of RF Circuit Objects

RF Toolbox software uses circuit (rfckt) objects to represent the following components:

* Circuit components such as amplifiers, transmission lines, and ladder filters
* RLC network components
* Networks of RF components

The toolbox represents each type of component and network with a different object. You use these
objects to analyze components and networks in the frequency domain.

Components Versus Networks
You define component behavior using network parameters and physical properties.

To specify an individual RF component:

1 Construct a circuit object to represent the component.
2 Specify or import component data.

You define network behavior by specifying the components that make up the network. These
components can be either individual components (such as amplifiers and transmission lines) or other
networks.

To specify an RF network:

1 Build circuit objects to represent the network components.

2 Construct a circuit object to represent the network.

Note This object defines how to connect the network components. However, the network is
empty until you specify the components that it contains.

3 Specify, as the Ckts property of the object that represents the network, a list of components that
make up the network.

These procedures are illustrated by example in “Model a Cascaded RF Network”.

RF Circuit Objects

Available Components and Networks

To create circuit objects that represent components, you use constructors whose names describe the
components. To create circuit objects that represent networks, you use constructors whose names
describe how the components are connected together.

The following table lists the available rfckt object constructors and describes the components or
networks the corresponding objects represent. For more information on a particular object, follow the
link in the table to the reference page for that object.

Constructor Description

rfckt.amplifier Amplifier, described by an rfdata object

rfckt.cascade Cascaded network, described by the list of components and
networks that comprise it

rfckt.coaxial Coaxial transmission line, described by dimensions and
electrical characteristics

rfckt.cpw Coplanar waveguide transmission line, described by dimensions
and electrical characteristics

rfckt.datafile General circuit, described by a data file

rfckt.delay Delay line, described by loss and delay

rfckt.hybrid Hybrid connected network, described by the list of components
and networks that comprise it

rfckt.hybridg Inverse hybrid connected network, described by the list of
components and networks that comprise it

rfckt.lcbandpasspi LC bandpass pi network, described by LC values

rfckt.lcbandpasstee LC bandpass tee network, described by LC values

rfckt.lcbandstoppi LC bandstop pi network, described by LC values

rfckt.lcbandstoptee LC bandstop tee network, described by LC values

rfckt.lchighpasspi LC highpass pi network, described by LC values

rfckt.lchighpasstee LC highpass tee network, described by LC values

rfckt.lclowpasspi LC lowpass pi network, described by LC values

rfckt.lclowpasstee LC lowpass tee network, described by LC values

rfckt.microstrip Microstrip transmission line, described by dimensions and
electrical characteristics

rfckt.mixer Mixer, described by an rfdata object

rfckt.parallel Parallel connected network, described by the list of components
and networks that comprise it

rfckt.parallelplate Parallel-plate transmission line, described by dimensions and
electrical characteristics

rfckt.passive Passive component, described by network parameters

rfckt.rlcgline RLCG transmission line, described by RLCG values

rfckt.series Series connected network, described by the list of components

and networks that comprise it

1-5

1 =rr Objects

Constructor Description

rfckt.seriesrlc Series RLC network, described by RLC values
rfckt.shuntrlc Shunt RLC network, described by RLC values
rfckt.twowire Two-wire transmission line, described by dimensions and

electrical characteristics

rfckt.txline General transmission line, described by dimensions and
electrical characteristics

Circuit Object Methods

The following table lists the methods of the circuit objects, the types of objects on which each can act,
and the purpose of each method.

Method Types of Objects Purpose

analyze All circuit objects Analyze a circuit object in the frequency
domain.

calculate All circuit objects Calculate specified parameters for a circuit
object.

copy All circuit objects Copy a circuit or data object.

extract All circuit objects Extract specified network parameters from a
circuit or data object, and return the result in
an array.

getdata All circuit objects Get data object containing analyzed result of a
specified circuit object.

getz0 rfckt.txline, Get characteristic impedance of a

rfckt.rlcgline, transmission line.

rfckt.twowire,
rfckt.parallelplate,
rfckt.coaxial,
rfdata.microstrip,

rfckt.cpw

listformat All circuit objects List valid formats for a specified circuit object
parameter.

listparam All circuit objects List valid parameters for a specified circuit
object.

loglog All circuit objects Plot specified circuit object parameters using
a log-log scale.

plot All circuit objects Plot the specified circuit object parameters on
an XY plane.

plotyy All circuit objects Plot the specified object parameters with y-
axes on both the left and right sides.

polar All circuit objects Plot the specified circuit object parameters on

polar coordinates.

1-6

RF Circuit Objects

Method Types of Objects Purpose
read rfckt.datafile, Read RF data from a file to a new or existing
rfckt.passive, circuit object.
rfckt.amplifier,
rfckt.mixer
restore rfckt.datafile, Restore data to original frequencies of
rfckt.passive, NetworkData for plotting.
rfckt.amplifier,
rfckt.mixer
semilogx All circuit objects Plot the specified circuit object parameters
using a log scale for the X-axis
semilogy All circuit objects Plot the specified circuit object parameters
using a log scale for the Y-axis
smith All circuit objects Plot the specified circuit object parameters on
a Smith chart.
write All circuit objects Write RF data from a circuit object to a file.
smithplot All circuit objects Plot measurement data on Smith chart

1-7

1 =rr Objects

RF Model Objects

1-8

In this section...

“Overview of RF Model Objects” on page 1-8
“Available Model Objects” on page 1-8

“Model Object Methods” on page 1-8

Overview of RF Model Objects

RF Toolbox software uses model (rfmodel) objects to represent components and measured data
mathematically for computing information such as time-domain response. Each type of model object
uses a different mathematical model to represent the component.

RF model objects provide a high-level component representation for use after you perform detailed
analysis using RF circuit objects. Use RF model objects to:

* Compute time-domain figures of merit for RF components
* Export Verilog-A models of RF components

Available Model Objects

The following table lists the available rfmodel object constructors and describes the model the
corresponding objects use. For more information on a particular object, follow the link in the table to
the reference page for that object.

Constructor Description

rfmodel. rational Rational function model

Model Object Methods

The following table lists the methods of the model objects, the types of objects on which each can act,
and the purpose of each method.

Method Types of Objects Purpose

fregresp All model objects Compute the frequency response of a model
object.

timeresp All model objects Compute the time response of a model object.

write All model objects Write data from a model object to a file.

RF Network Parameter Objects

RF Network Parameter Objects

In this section...

“Overview of Network Parameter Objects” on page 1-9
“Available Network Parameter Objects” on page 1-9

“Network Parameter Object Functions” on page 1-9

Overview of Network Parameter Objects

RF Toolbox software offers network parameter objects for:

* Importing network parameter data from a Touchstone file.
* Converting network parameters.
* Analyzing network parameter data.

Unlike circuit, model, and data objects, you can use existing RF Toolbox functions to operate directly
on network parameter objects.

Available Network Parameter Objects

The following table lists the available network parameter objects and the functions that are used to
construct them. For more information on a particular object, follow the link in the table to the
reference page for that functions.

Network Parameter Object Type Network Parameter Object Function
ABCD Parameter object abcdparameters

Hybrid-g parameter object gparameters

Hybrid parameter object hparameters

S-parameter object sparameters

Y-parameter object yparameters

Z-parameter object zparameters

Network Parameter Object Functions

The following table lists the functions that accept network parameter objects as inputs, the types of
objects on which each can act, and the purpose of each function.

Function Types of Objects Purpose

abcdparameters All network parameter objects |Convert any network
parameters to ABCD
parameters

gparameters All network parameter objects |Convert any network
parameters to hybrid-g
parameters

1-9

1 =rr Objects

Function Types of Objects Purpose

hparameters All network parameter objects |Convert any network
parameters to hybrid
parameters

sparameters All network parameter objects |Convert any network
parameters to S-parameters

yparameters All network parameter objects |Convert any network
parameters to Y-parameters

zparameters All network parameter objects |Convert any network
parameters to Z-parameters

cascadesparams S-parameter objects Cascade S-parameters

deembedsparams S-parameter objects De-embed S-parameters

gammain S-parameter objects Calculate input reflection
coefficient

gammaml S-parameter objects Calculate load reflection
coefficient

gammams S-parameter objects Calculate source reflection
coefficient

gammaout S-parameter objects Calculate output reflection
coefficient

ispassive S-parameter objects Check S-parameter data
passivity

makepassive S-parameter objects Make S-parameter data passive

newref S-parameter objects Change reference impedance

powergain S-parameter objects Calculate power gain

rfplot S-parameter objects Plot network parameters

rfinterpl All network parameter objects |Interpolate network parameters
at new frequencies

rfparam All network parameter objects |Extract vector of network
parameters

s2tf S-parameter objects Create transfer function from S-
parameters

stabilityk S-parameter objects Calculate stability factor K of 2-
port network

stabilitymu S-parameter objects Calculate stability factor u of 2-
port network

smith All network parameter objects |Plot network parameter data on
a Smith® Chart

smithplot All network parameter objects |Plot measurement data on

Smith chart

Model an RF Component

* “Create RF Objects” on page 2-2

» “Specify or Import Component Data” on page 2-4
» “Specify Operating Conditions” on page 2-12

* “Process File Data for Analysis” on page 2-13

* “Analyze and Plot RF Components” on page 2-17

+ “Export Component Data to a File” on page 2-26

* “Basic Operations with RF Objects” on page 2-28

2 Model an RF Component

Create RF Objects

2-2

In this section...

“Construct a New Object” on page 2-2
“Copy an Existing Object” on page 2-3

Construct a New Object

You can create any rfdata, rfckt or rfmodel object by calling the object constructor. You can
create an rfmodel object by fitting a rational function to passive component data.

This section contains the following topics:

+ “Call the Ohject Constructor” on page 2-2
* “Fit a Rational Function to Passive Component Data” on page 2-3

Call the Object Constructor

To create a new RF object with default property values, you call the object constructor without any
arguments:

h = objecttype.objectname
where:

* his the handle to the new object.
* objecttype is the object type (rfdata, rfckt, or rfmodel).
* objectname is the object name.

For example, to create an RLCG transmission line object, type:
h = rfckt.rlcgline
because the RLCG transmission line object is a circuit (rfckt) object named rlcgline.

The following code illustrates how to call the object constructor to create a microstrip transmission
line object with default property values. The output t1 is the handle of the newly created
transmission line object.

tl = rfckt.microstrip

RF Toolbox software lists the properties of the transmission line you created along with the
associated default property values.

tl =
Name: 'Microstrip Transmission Line'
nPort: 2
AnalyzedResult: []
LineLength: 0.0100
StubMode: 'NotAStub'
Termination: 'NotApplicable’
Width: 6.0000e-004
Height: 6.3500e-004

Create RF Objects

Thickness: 5.0000e-006
EpsilonR: 9.8000
SigmaCond: Inf
LossTangent: 0
The reference page describes these properties in detail, rfckt.microstrip.
Fit a Rational Function to Passive Component Data

You can create a model object by fitting a rational function to passive component data. You use this
approach to create a model object that represents one of the following using a rational function:

* A circuit object that you created and analyzed.
» Data that you imported from a file.

For more information, see “Fit a Model Object to Circuit Object Data” on page 2-24.

Copy an Existing Object

You can create a new object with the same property values as an existing object by using the copy
function to copy the existing object. This function is useful if you have an object that is similar to one
you want to create.

For example,
t2 = copy(tl);

creates a new object, t2, which has the same property values as the microstrip transmission line
object, t1.

You can later change specific property values for this copy. For information on modifying object
properties, see “Specify or Import Component Data” on page 2-4.

Note The syntax t2 = t1 copies only the object handle and does not create a new object.

2-3

2 Model an RF Component

Specify or Import Component Data

2-4

In this section...

“RF Object Properties” on page 2-4

“Set Property Values” on page 2-4

“Import Property Values from Data Files” on page 2-6

“Use Data Objects to Specify Circuit Properties” on page 2-8
“Retrieve Property Values” on page 2-9

“Reference Properties Directly Using Dot Notation” on page 2-11

RF Object Properties

Object properties specify the behavior of an object. You can specify object properties, or you can
import them from a data file. To learn about properties that are specific to a particular type of circuit,
data, or model object, see the reference page for that type of object.

Note The “RF Circuit Objects” on page 1-4, “RF Data Objects” on page 1-2,“RF Model Objects” on
page 1-8 sections list the available types of objects and provide links to their reference pages.

Set Property Values

You can specify object property values when you construct an object or you can modify the property
values of an existing object.

This section contains the following topics:

» “Specify Property Values at Construction” on page 2-4
* “Change Property Values of an Existing Object” on page 2-5

Specify Property Values at Construction

To set a property when you construct an object, include a comma-separated list of one or more
property/value pairs in the argument list of the object construction command. A property/value pair
consists of the arguments 'PropertyName' ,PropertyValue, where:

* PropertyName is a character vector specifying the property name. The name is case-insensitive.
In addition, you need only type enough letters to uniquely identify the property name. For
example, 'st' is sufficient to refer to the StubMode property.

Note You must use single quotation marks around the property name.

* PropertyValue is the value to assign to the property.

Include as many property names in the argument list as there are properties you want to set. Any
property values that you do not set retain their default values. The circuit and data object reference
pages list the valid values as well as the default value for each property.

This section contains examples of how to perform the following tasks:

Specify or Import Component Data

* “Construct Components with Specified Properties” on page 2-5
* “Construct Networks of Specified Components” on page 2-5

Construct Components with Specified Properties

The following code creates a coaxial transmission line circuit object to represent a coaxial
transmission line that is 0.05 meters long. Notice that the toolbox lists the available properties and
their values.

tl rfckt.coaxial('LineLength',0.05)

tl

Name: 'Coaxial Transmission Line'
nPort: 2
AnalyzedResult: []
LineLength: 0.0500
StubMode: 'NotAStub'
Termination: 'NotApplicable’
OuterRadius: 0.0026
InnerRadius: 7.2500e-004
MuR: 1
EpsilonR: 2.3000
LossTangent: 0
SigmaCond: Inf

Construct Networks of Specified Components

To combine a set of RF components and existing networks to form an RF network, you create a
network object with the Ckts property set to an array containing the handles of all the circuit objects
in the network.

Suppose you have the following RF components:

tl = rfckt.coaxial('LineLength',0.05);
al = rfckt.amplifier;
t2 = rfckt.coaxial('LineLength',0.1);

The following code creates a cascaded network of these components:
casc_network = rfckt.cascade('Ckts',{t1l,al,t2});

Change Property Values of an Existing Object

There are two ways to change the properties of an existing object:

* Using the set command
» Using structure-like assignments called dot notation

This section discusses the first option. For details on the second option, see “Reference Properties
Directly Using Dot Notation” on page 2-11.

To modify the properties of an existing object, use the set command with one or more property/value
pairs in the argument list. The general syntax of the command is

set(h,Propertyl', valuel, 'Property2',value2,...)

where

2-5

2 Model an RF Component

2-6

* his the handle of the object.
* 'Propertyl',valuel, 'Property2',value2, ... isthe list of property/value pairs.

For example, the following code creates a default coaxial transmission line object and changes it to a
series stub with open termination.

t1l = rfckt.coaxial;
set(tl, 'StubMode', 'series', 'Termination', 'open')

Note You can use the set command without specifying any property/value pairs to display a list of
all properties you can set for a specific object. This example lists the properties you can set for the
coaxial transmission line t1:

set(tl)

ans =
LineLength: {}
StubMode: {}
Termination: {}
OQuterRadius: {}
InnerRadius: {}
MuR: {}
EpsilonR: {}

LossTangent: {}
SigmaCond: {}

Import Property Values from Data Files

RF Toolbox software lets you import industry-standard data files, MathWorks® AMP files, and
Agilent® P2D and S2D files into specific objects. This import capability lets you simulate the behavior
of measured components.

You can import the following file formats:

* Industry-standard file formats — Touchstone SNP, YNP, ZNP, HNP, and GNP formats specify the
network parameters and noise information for measured and simulated data.

For more information on Touchstone files, see https://ibis.org/connector/
touchstone specll.pdf.

* Agilent P2D file format — Specifies amplifier and mixer large-signal, power-dependent network
parameters, noise data, and intermodulation tables for several operating conditions, such as
temperature and bias values.

The P2D file format lets you import system-level verification models of amplifiers and mixers.

* Agilent S2D file format — Specifies amplifier and mixer network parameters with gain
compression, power-dependent S,; parameters, noise data, and intermodulation tables for several
operating conditions.

The S2D file format lets you import system-level verification models of amplifiers and mixers.

* MathWorks amplifier (AMP) file format — Specifies amplifier network parameters, output power
versus input power, noise data and third-order intercept point.

https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf

Specify or Import Component Data

For more information about .amp files, see “AMP File Data Sections” on page 5-2.

This section contains the following topics:

* “Objects Used to Import Data from a File” on page 2-7
* “How to Import Data Files” on page 2-7

Objects Used to Import Data from a File

One data object and three circuit objects accept data from a file. The following table lists the objects
and any corresponding data format each supports.

Object Description Supported Format(s)

rfdata.data Data object containing network |Touchstone, AMP, P2D, S2D
parameter data, noise figure,
and third-order intercept point

rfckt.amplifier Amplifier Touchstone, AMP, P2D, S2D
rfckt.mixer Mixer Touchstone, AMP, P2D, S2D
rfckt.passive Generic passive component Touchstone

How to Import Data Files

To import file data into a circuit or data object at construction, use a read command of the form:
obj = read(obj type,'filename');

where

* obj is the handle of the circuit or data object.

* o0bj type is the type of object in which to store the data, from the list of objects that accept file
data shown in “Objects Used to Import Data from a File” on page 2-7.

» filename is the name of the file that contains the data.

For example,

ckt obj=read(rfckt.amplifier, 'default.amp');

imports data from the file default.amp into an rfckt.amplifier object.

You can also import file data into an existing circuit object. The following commands are equivalent to
the previous command:

ckt obj=rfckt.amplifier;
read(ckt obj, 'default.amp');

Note When you import component data from a . p2d or .s2d file, properties are defined for several
operating conditions. You must select an operating condition to specify the object behavior, as
described in “Specify Operating Conditions” on page 2-12.

2-7

2 Model an RF Component

2-8

Use Data Objects to Specify Circuit Properties

To specify a circuit object property using a data object, use the set command with the name of the
data object as the value in the property/value pair.

For example, suppose you have the following rfckt.amplifier and rfdata.nf objects:

amp = rfckt.amplifier
f = 2.0e9;
nf = 13.3244;

nfdata = rfdata.nf('Freq',f, 'Data’',nf)

The following command uses the rfdata.nf data object to specify the rfckt.amplifier
NoiseData property:

set(amp, 'NoiseData',nfdata)
Set Circuit Object Properties Using Data Objects

In this example, you create a circuit object. Then, you create three data objects and use them to
update the properties of the circuit object.

1 Create an amplifier object. This circuit object, rfckt.amplifier, has a network parameter,
noise data, and nonlinear data properties. These properties control the frequency response of the
amplifier, which is stored in the AnalyzedResult property. By default, all amplifier properties
contain values from the default.amp file. The NetworkData property is an rfdata.network
object that contains 50-ohm S-parameters. The NoiseData property is an rfdata.noise object
that contains frequency-dependent spot noise data. The NonlinearData property is an
rfdata.power object that contains output power and phase information.

amp = rfckt.amplifier

The toolbox displays the following output:
amp =

Name: 'Amplifier'
nPort: 2
AnalyzedResult: [1x1 rfdata.data]
IntpType: 'Linear'
NetworkData: [1x1 rfdata.network]
NoiseData: [1x1 rfdata.noise]
NonlinearData: [1x1 rfdata.power]

2 Create a data object that stores network data. Type the following set of commands at the
MATLAB prompt to create an rfdata.network object that stores the 2-port Y-parameters at
2.08 GHz, 2.10 GHz, and 2.15 GHz. Later in this example, you use this data object to update the
NetworkData property of the rfckt.amplifier object.

f =1[2.08 2.10 2.15]*1.0e9;

y(:,:,1) = [-.0090-.01041i, .0013+.00181i; ...
-.2947+.2961i, .0252+.00751i];

y(:,:,2) = [-.0086-.00471i, .0014+.00191i; ...
-.3047+.3083i, .0251+.00861i];

y(:,:,3) = [-.0051+.0130i, .0017+.00201;

-.3335+.3861i, .0282+.0110i];

Specify or Import Component Data

netdata = rfdata.network('Type','Y PARAMETERS', ...
'Freq',f,'Data',y)

The toolbox displays the following output:
netdata =

Name: 'Network parameters'
Type: 'Y _PARAMETERS'
Freq: [3x1 double]
Data: [2x2x3 double]
Z0: 50

3 Create a data object that stores noise figure values. Type the following set of commands at
the MATLAB prompt to create a rfdata.nf object that contains noise figure values, in dB, at
seven different frequencies. Later in this example, you use this data object to update the
NoiseData property of the rfckt.amplifier object.

f =1[1.93 2.06 2.08 2.10 2.15 2.30 2.40]*1.0e9;
nf=[12.4521 13.2466 13.6853 14.0612 13.4111 12.9499 13.3244];

nfdata = rfdata.nf('Freq',f, 'Data’',nf)

The toolbox displays the following output:
nfdata =

Name: 'Noise figure'
Freq: [7x1 double]
Data: [7x1 double]

4 Create a data object that stores output third-order intercept points. Type the following
command at the MATLAB prompt to create a rfdata.ip3 object that contains an output third-
order intercept point of 8.45 watts, at 2.1 GHz. Later in this example, you use this data object to
update the NonlinearData property of the rfckt.amplifier object.

ip3data = rfdata.ip3('Type','0IP3', 'Freq',2.1e9, 'Data',8.45)

The toolbox displays the following output:

ip3data =
Name: '3rd order intercept'
Type: 'OIP3'
Freq: 2.1000e+009
Data: 8.4500

5 Update the properties of the amplifier object. Type the following set of commands at the
MATLAB prompt to update the NetworkData, NoiseData, and NonlinearData properties of
the amplifier object with the data ohjects you created in the previous steps:

amp.NetworkData = netdata;
amp.NoiseData = nfdata;
amp.NonlinearData = ip3data;

Retrieve Property Values

You can retrieve one or more property values of an existing object using the get command.

2-9

2 Model an RF Component

This section contains the following topics:

* “Retrieve Specified Property Values” on page 2-10
* “Retrieve All Property Values” on page 2-10

Retrieve Specified Property Values

To retrieve specific property values for an object, use the get command with the following syntax:
PropertyValue = get(h,PropertyName)

where

* PropertyValue is the value assigned to the property.
* his the handle of the object.
* PropertyName is a character vector specifying the property name.

For example, suppose you have the following coaxial transmission line:
h2 = rfckt.coaxial;

The following code retrieves the value of the inner radius and outer radius for the coaxial
transmission line:

ir = get(h2, 'InnerRadius"')
or = get(h2, 'OuterRadius"')
ir =
7.2500e-004
or =
0.0026

Retrieve All Property Values

To display a list of properties associated with a specific object as well as their current values, use the
get command without specifying a property name.

For example:

get(h2)
Name: 'Coaxial Transmission Line'
nPort: 2
AnalyzedResult: []
LineLength: 0.0100
StubMode: 'NotAStub'
Termination: 'NotApplicable’
OuterRadius: 0.0026
InnerRadius: 7.2500e-004
MuR: 1
EpsilonR: 2.3000
LossTangent: 0
SigmaCond: Inf

Note This list includes read-only properties that do not appear when you type set (h2). Fora
coaxial transmission line object, the read-only properties are Name, nPort, and AnalyzedResult.

2-10

Specify or Import Component Data

The Name and nPort properties are fixed by the toolbox. The AnalyzedResult property value is
calculated and set by the toolbox when you analyze the component at specified frequencies.

Reference Properties Directly Using Dot Notation

An alternative way to query for or modify property values is by structure-like referencing. The field
names for RF objects are the property names, so you can retrieve or modify property values with the
structure-like syntax.

* PropertyValue = rfobj.PropertyName stores the value of the PropertyName property of
the rfobj object in the PropertyValue variable. This command is equivalent to
PropertyValue = get(rfobj, 'PropertyName').

* rfobj.PropertyName = PropertyValue sets the value of the PropertyName property to
PropertyValue for the rfobj object. This command is equivalent to
set(rfobj, 'PropertyName' ,PropertyValue).

For example, typing

ckt = rfckt.amplifier('IntpType', ' 'cubic');
ckt.IntpType

gives the value of the property IntpType for the circuit object ckt.

ans =
Cubic

Similarly,
ckt.IntpType = 'linear';
resets the interpolation method to linear.

You do not need to type the entire field name or use uppercase characters. You only need to type the
minimum number of characters sufficient to identify the property name uniquely. Thus entering the
commands

ckt = rfckt.amplifier('IntpType', 'cubic');
ckt.in

also produces

ans =
Cubic

2-11

2 Model an RF Component

Specify Operating Conditions

2-12

In this section...

“Available Operating Conditions” on page 2-12
“Set Operating Conditions” on page 2-12
“Display Available Operating Condition Values” on page 2-12

Available Operating Conditions

Agilent P2D and S2D files contain simulation results at one or more operating conditions. Operating
conditions define the independent parameter settings that are used when creating the file data. The
specified conditions differ from file to file.

When you import component data from a . p2d or .s2d file, the object contains property values for
several operating conditions. The available conditions depend on the data in the file. By default, RF
Toolbox software defines the object behavior using the property values that correspond to the
operating conditions that appear first in the file. To use other property values, you must select a
different operating condition.

Set Operating Conditions

To set the operating conditions of a circuit or data object, use a setop command of the form:
setop(, 'Conditionl',valuel, ..., 'ConditionN',valueN,...)

where

+ is the handle of the circuit or data object.

* (Conditionl,valuel,...,ConditionN,valueN are the condition/value pairs that specify the
operating condition.

For example,
setop(myp2d, 'BiasL', 2, 'BiasU', 6.3)

specifies an operating condition of BiasL = 2 and BiasU = 6.3 for myp2d.

Display Available Operating Condition Values

To display a list of available operating condition values for a circuit or data object, use the setop
method.

setop(obj)
displays the available values for all operating conditions of the object obj.
setop(obj, 'Conditionl')

displays the available values for Conditionl.

Process File Data for Analysis

Process File Data for Analysis

In this section...

“Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters” on page 2-13
“Extract M-Port S-Parameters from N-Port S-Parameters” on page 2-14
“Cascade N-Port S-Parameters” on page 2-15

Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters

After you import file data (as described in “Import Property Values from Data Files” on page 2-6), you
can convert a matrix of single-ended S-parameter data to a matrix of mixed-mode S-parameters.

This section contains the following topics:
* “Functions for Converting S-Parameters” on page 2-13
* “Convert S-Parameters” on page 2-13

Functions for Converting S-Parameters

To convert between 4-port single-ended S-parameter data and 2-port differential-, common-, and

cross-mode S-parameters, use one of these functions:

* s2scc — Convert 4-port, single-ended S-parameters to 2-port, common-mode S-parameters (S.).

* s2scd — Convert 4-port, single-ended S-parameters to 2-port, cross-mode S-parameters (Sq).

* s2sdc — Convert 4-port, single-ended S-parameters to cross-mode S-parameters (Sq.).

* s2sdd — Convert 4-port, single-ended S-parameters to 2-port, differential-mode S-parameters
(Saa)-

To perform the above conversions all at once, or to convert larger data sets, use one of these
functions:

* s2smm — Convert 4N-port, single-ended S-parameters to 2N-port, mixed-mode S-parameters.
* smm2s — Convert 2N-port, mixed-mode S-parameters to 4N-port, single-ended S-parameters.

Conversion functions support a variety of port orderings. For more information on these functions,
see the corresponding reference pages.

Convert S-Parameters

In this example, use the toolbox to import 4-port single-ended S-parameter data from a file, convert
the data to 2-port differential S-parameter data, and create a new rfckt object to store the
converted data for analysis.

At the MATLAB prompt:
1 Type this command to import data from the file default. s4p:

SingleEnded4Port = read(rfdata.data, 'default.s4p');

2 Type this command to convert 4-port single-ended S-parameters to 2-port mixed-mode S-
parameters:

2-13

2 Model an RF Component

2-14

DifferentialSParams = s2sdd(SingleEnded4Port.S Parameters);

Note The S-parameters that you specify as input to the s2sdd function are the ones the toolbox
stores in the S Parameters property of the rfdata.data object.

Type this command to create an rfckt.passive object that stores the 2-port differential S-
parameters for simulation:

DifferentialCkt = rfckt.passive('NetworkData',
rfdata.network('Data', DifferentialSParams, 'Freq',
SingleEnded4PortData.Freq));

Extract M-Port S-Parameters from N-Port S-Parameters

After you import file data (as described in “Import Property Values from Data Files” on page 2-6), you
can extract a set of data with a smaller number of ports by terminating one or more ports with a
specified impedance.

This section contains the following topics:

“Extract S-Parameters” on page 2-14
“Extract S-Parameters From Imported File Data” on page 2-15

Extract S-Parameters

To extract M-port S-parameters from N-port S-parameters, use the snp2smp function with the
following syntax:

S _params _mp = snp2smp(s_params np, zO, n2m_index, zt)

where

S _params_np is an array of N-port S-parameters with a reference impedance z0.
s _params_mp is an array of M-port S-parameters.

n2m_index is a vector of length M specifying how the ports of the N-port S-parameters map to
the ports of the M-port S-parameters. n2m_index (i) is the index of the port from s params np
that is converted to the ith port of s params mp.

zt is the termination impedance of the ports.

The following figure illustrates how to specify the ports for the output data and the termination of the
remaining ports.

Process File Data for Analysis

ZT{i 1| Pt [bhzrny

zT{2}f 2 N-1

[k bzrk

i]

For more details about the arguments to this function, see the snp2smp reference page.
Extract S-Parameters From Imported File Data

In this example, use the toolbox to import 16-port S-parameter data from a file, convert the data to 4-
port S-parameter data by terminating the remaining ports, and create a new rfckt object to store
the extracted data for analysis.

At the MATLAB prompt:

1 Type this command to import data from the file default.s16p into an rfdata.data object,
SingleEndedl6PortData:

SingleEndedl6PortData = read(rfdata.data, 'default.sl6p');

2 Type this command to convert 16-port S-parameters to 4-port S-parameters by using ports 1, 16,
2, and 15 as the first, second, third, and fourth ports, and terminating the remaining 12 ports
with an impedance of 50 ohms:

N2M index = [1 16 2 15];

FourPortSParams = snp2smp(SingleEndedl6PortData.S Parameters, ...
SingleEndedl6PortData.Z0, N2M index, 50);

Note The S-parameters that you specify as input to the snp2smp function are the ones the
toolbox stores in the S Parameters property of the rfdata.data object.

3 Type this command to create an rfckt.passive object that stores the 4-port S-parameters for
simulation:

FourPortChannel = rfckt.passive('NetworkData',
rfdata.network('Data', FourPortSParams, 'Freq',
SingleEndedl6PortData.Freq));

Cascade N-Port S-Parameters

After you import file data (as described in “Import Property Values from Data Files” on page 2-6), you
can cascade two or more networks of N-port S-parameters.

2-15

2 Model an RF Component

2-16

To cascade networks of N-port S-parameters, use the cascadesparams function with the following
syntax:

s _params = cascadesparams(sl params,s2 params,...,Sh_params,nconn)
where

* s params is an array of cascaded S-parameters.
* sl params,s2 params,...,sn_params are arrays of input S-parameters.

* nconn is a positive scalar or a vector of size n-1 specifying how many connections to make
between the ports of the input S-parameters. cascadesparams connects the last port(s) of one
network to the first port(s) of the next network.

For more details about the arguments to this function, see the cascadesparams reference page.
Import and Cascade N-Port S-Parameters

In this example, use the toolbox to import 16-port and 4-port S-parameter file data and cascade the
two S-parameter networks by connecting the last three ports of the 16-port network to the first three
ports of the 4-port network. Then, create a new rfckt object to store the resulting network for
analysis.

At the MATLAB prompt:

1 Type these commands to import data from the files default.s16p and default.s4p, and
create the 16- and 4-port networks of S-parameters:

S 16Port = read(rfdata.data, 'default.slép');
S 4Port = read(rfdata.data, 'default.s4p');
freq = [2e9 2.1e9];

analyze(S 16Port, freq);

analyze(S 4Port, freq);

sparams_16p = S 16Port.S Parameters;
sparams 4p = S 4Port.S Parameters;

2 Type this command to cascade 16-port S-parameters and 4-port S-parameters by connecting
ports 14, 15, and 16 of the 16-port network to ports 1, 2, and 3 of the 4-port network:
sparams_cascaded = cascadesparams(sparams_16p, sparams_4p,3)
cascadesparams creates a 14-port network. Ports 1-13 are the first 13 ports of the 16-port
network. Port 14 is the fourth port of the 4-port network.

3 Type this command to create an rfckt.passive object that stores the 14-port S-parameters for
simulation:

Cktl4 = rfckt.passive('NetworkData',
rfdata.network('Data', sparams cascaded, 'Freq',
freq));

For more examples of how to use this function, see the cascadesparams reference page.

Analyze and Plot RF Components

Analyze and Plot RF Components

In this section...

“Analyze Networks in the Frequency Domain” on page 2-17
“Visualize Component and Network Data” on page 2-17

“Compute and Plot Time-Domain Specifications” on page 2-23

Analyze Networks in the Frequency Domain

RF Toolbox software lets you analyze RF components and networks in the frequency domain. You use
the analyze method to analyze a circuit object over a specified set of frequencies.

For example, to analyze a coaxial transmission line from 1 GHz to 2.9 GHz in increments of 10 MHz:

ckt = rfckt.coaxial;
f = [1.0e9:1e7:2.9e9];
analyze(ckt,f);

Note For all circuits objects except those that contain data from a file, you must perform a
frequency-domain analysis with the analyze method before visualizing component and network
data. For circuits that contain data from a file, the toolbox performs a frequency-domain analysis
when you use the read method to import the data.

When you analyze a circuit object, the toolbox computes the circuit network parameters, noise figure
values, and output third-order intercept point (OIP3) values at the specified frequencies and stores
the result of the analysis in the object's AnalyzedResult property.

For more information, see the analyze reference page or the circuit object reference page.

Visualize Component and Network Data

The toolbox lets you validate the behavior of circuit objects that represent RF components and
networks by plotting the following data:
* Large- and small-signal S-parameters
* Noise figure

* Output third-order intercept point

» Power data

* Phase noise

* Voltage standing-wave ratio

* Power gain

* Group delay

* Reflection coefficients

» Stability data

* Transfer function

2-17

2 Model an RF Component

2-18

The following table summarizes the available plots and charts, along with the methods you can use to
create each one and a description of its contents.

Plot Type Methods Plot Contents

Rectangular Plot plot Parameters as a function of frequency or,
where applicable, operating condition.
plotyy The available parameters include:

loglog * S-parameters
- * Noise figure
>emitogx * Voltage standing-wave ratio (VSWR)

semilogy + OIP3

Budget Plot (3-D) plot Parameters as a function of frequency for
each component in a cascade, where the
curve for a given component represents
the cumulative contribution of each RF
component up to and including the
parameter value of that component.

Mixer Spur Plot plot Mixer spur power as a function of
frequency for an rfckt.mixer object or
an rfckt.cascade object that contains
a mixer.

Polar Plot polar Magnitude and phase of S-parameters as
a function of frequency.

Smith Chart smithplot Real and imaginary parts of S-parameters
as a function of frequency, used for
analyzing the reflections caused by

impedance mismatch.

For each plot you create, you choose a parameter to plot and, optionally, a format in which to plot
that parameter. The plot format defines how the toolbox displays the data on the plot. The available
formats vary with the data you select to plot. The data you can plot depends on the type of plot you
create.

Note You can use the listparam method to list the parameters of a specified circuit object that are
available for plotting. You can use the listformat method to list the available formats for a
specified circuit object parameter.

The following topics describe the available plots:

* “Rectangular” on page 2-19

* “Budget” on page 2-19

* “Mixer Spur” on page 2-20

* “Polar Plots and Smith Charts” on page 2-22

Analyze and Plot RF Components

Rectangular

You can plot any parameters that are relevant to your object on a rectangular plot. You can plot
parameters as a function of frequency for any object. When you import object data from a . p2d

or .s2d file, you can also plot parameters as a function of any operating condition from the file that
has numeric values, such as bias. In addition, when you import object data from a . p2d file, you can
plot large-signal S-parameters as a function of input power or as a function of frequency. These
parameters are denoted LS11, LS12, LS21, and LS22.

The following table summarizes the methods that are available in the toolbox for creating rectangular
plots and describes the uses of each one. For more information on a particular type of plot, follow the
link in the table to the documentation for that method.

Method Description

plot Plot of one or more object parameters

plotyy Plot of one or more object parameters with y-axes on both the
left and right sides

semilogx Plot of one or more object parameters using a log scale for the X-
axis

semilogy Plot of one or more object parameters using a log scale for the Y-
axis

loglog Plot of one or more object parameters using a log-log scale

Budget

You use the link budget plot to understand the individual contribution of each component to a plotted
parameter value in a cascaded network with multiple components.

The budget plot is a three-dimensional plot that shows one or more curves of parameter values as a
function of frequency, ordered by the circuit index of the cascaded network.

Consider the following cascaded network:

casc = rfckt.cascade('Ckts', ...
{rfckt.amplifier,rfckt.lcbandpasspi, rfckt.txline})

The following figure shows how the circuit index is assigned to each component in the cascade, based
on its sequential position in the network.

rfckt.amplifier rfckt.lcbandpasspi rfeckt.txline
object object object
(Index = 1) (Index = 2) (Index = 3)

You create a budget plot for this cascade using the plot method with the second argument set to
"budget’, as shown in the following command:

plot(casc, 'budget', 's21"')

A curve on the link budget plot for each circuit index represents the contributions to the parameter
value of the RF components up to that index. The following figure shows the budget plot.

2-19

2 Model an RF Component

2-20

)Figurer ~[olx|

File Edit Wiew Insert Tools Deskiop Sindow Help b

IR EEE

521 [Magnitude (decibels)]

-100 .
1

Freq [GHz] Index of the circuit
Contributions to 521 Contributions to 521 Contributions to S21
from compenent 1 from components from components
1and 2 1,2, and 3

Budget Plot

If you specify two or more parameters, the toolbox puts the parameters in a single plot. You can only
specify a single format for all the parameters.

Mixer Spur

You use the mixer spur plot to understand how mixer nonlinearities affect output power at the desired
mixer output frequency and at the intermodulation products that occur at the following frequencies:

fout = N * fin+ M * f10
where

* fin is the input frequency.
* f1o is the local oscillator frequency.

* N and M are integers.

The toolbox calculates the output power from the mixer intermodulation table (IMT). These tables are
described in detail in the Visualizing Mixer Spurs example.

matlab:showdemo mixer_spurs.m

Analyze and Plot RF Components

The mixer spur plot shows power as a function of frequency for an rfckt.mixer object or an
rfckt.cascade object that contains a mixer. By default, the plot is three-dimensional and shows a
stem plot of power as a function of frequency, ordered by the circuit index of the object. You can
create a two-dimensional stem plot of power as a function of frequency for a single circuit index by
specifying the index in the mixer spur plot command.

Consider the following cascaded network:

FirstCkt = rfckt.amplifier('NetworkData',
rfdata.network('Type', 'S', 'Freq', 2.1le9,
'Data', [0,0;10,0]), 'NoiseData', 0, 'NonlinearData', inf);
SecondCkt = read(rfckt.mixer, 'samplespurl.s2d');
ThirdCkt = rfckt.lcbandpasstee('L', [97.21 3.66 97.21]*1e-9,
'C', [1.63 43.25 1.63]1*1.0e-12);
CascadedCkt = rfckt.cascade('Ckts',
{FirstCkt, SecondCkt, ThirdCkt});

The following figure shows how the circuit index is assigned to the components in the cascade, based
on its sequential position in the network.

LNA

I

I

I
l

|
——

I

I

I
I
I

|
|
|
Mixer : Filter
|
|
|

Circuit Index 0 Circuit Index 1 Circuit Index 2 Circuit Index 3

» Circuit index 0 corresponds to the cascade input.
* Circuit index 1 corresponds to the LNA output.

* Circuit index 2 corresponds to the mixer output.
» Circuit index 3 corresponds to the filter output.

You create a spur plot for this cascade using the plot method with the second argument set to
'mixerspur’', as shown in the following command:

plot(CascadedCkt, 'mixerspur')

Within the three dimensional plot, the stem plot for each circuit index represents the power at that
circuit index. The following figure shows the mixer spur plot.

2-21

2 Model an RF Component

JFguret (=T

File Edit Wiew Insert Tools Deskl:u:up|'-.-'-.-'ind|:|w Help u

I EEREIEEIE =

£

@

=,

]

=

[}

o

Freq [GHz] Index of the circuit

Input power Output power Output power Qutput power
of component 1 of component 1 of component 2 of component 3

Mixer Spur Plot
For more information on mixer spur plots, see the plot reference page.
Polar Plots and Smith Charts

You can use the toolbox to generate Polar plots and Smith Charts. If you specify two or more
parameters, the toolbox puts the parameters in a single plot.

The following table describes the Polar plot and Smith Chart options, as well as the available
parameters.

Note LS11, LS12, LS21, and LS22 are large-signal S-parameters. You can plot these parameters as a
function of input power or as a function of frequency.

2-22

Analyze and Plot RF Components

Plot Type Method Parameter
Polar plane polar S11, S12,S21, S22

LS11, LS12, LS21, LS22
(Objects with data from a P2D
file only)

Z Smith chart smithplot with type S11, S22
argument setto 'z

LS11, LS22 (Objects with data
from a P2D file only)

Y Smith chart smithplot with type S11, S22
argument setto 'y

LS11, LS22 (Objects with data
from a P2D file only)

ZY Smith chart smithplot with type S11, S22
argument set to 'zy"

LS11, LS22 (Objects with data
from a P2D file only)

By default, the toolbox plots the parameter as a function of frequency. When you import block data
from a .p2d or .s2d file, you can also plot parameters as a function of any operating condition from
the file that has numeric values, such as bias.

Note The circle method lets you place circles on a Smith Chart to depict stability regions and
display constant gain, noise figure, reflection and immittance circles. For more information about this
method, see the circle reference page or the two-part RF Toolbox example about designing
matching networks.

For more information on a particular type of plot, follow the link in the table to the documentation for
that method.

Compute and Plot Time-Domain Specifications
The toolbox lets you compute and plot time-domain characteristics for RF components.

This section contains the following topics:

* “Compute the Network Transfer Function” on page 2-23
* “Fit a Model Object to Circuit Object Data” on page 2-24
* “Compute and Plot the Time-Domain Response” on page 2-24

Compute the Network Transfer Function

You use the s2tf function to convert 2-port S-parameters to a transfer function. The function returns
a vector of transfer function values that represent the normalized voltage gain of a 2-port network.

The following code illustrates how to read file data into a passive circuit object, extract the 2-port S-

parameters from the object and compute the transfer function of the data at the frequencies for
which the data is specified. z0 is the reference impedance of the S-parameters, zs is the source

2-23

2 Model an RF Component

2-24

impedance, and z1 is the load impedance. See the s2tf reference page for more information on how
these impedances are used to define the gain.

PassiveCkt = rfckt.passive('File', 'passive.s2p')

z0=50; zs=50; z1=50;

[SParams, Freq] = extract(PassiveCkt, 'S Parameters', z0);
TransFunc = s2tf(SParams, z0, zs, zl);

Fit a Model Object to Circuit Object Data

You use the rationalfit function to fit a rational function to the transfer function of a passive
component. The rationalfit function returns an rfmodel object that represents the transfer
function analytically.

The following code illustrates how to use the rationalfit function to create an
rfmodel. rational object that contains a rational function model of the transfer function that you
created in the previous example.

RationalFunc = rationalfit(Freq, TransFunc)

To find out how many poles the toolbox used to represent the data, look at the length of the A vector
of the RationalFunc model object.

nPoles = length(RationalFunc.A)

Note The number of poles is important if you plan to use the RF model object to create a model for
use in another simulator, because a large number of poles can increase simulation time. For
information on how to represent a component accurately using a minimum number of poles, see
“Represent a Circuit Object with a Model Object” on page 3-4.

See the rationalfit reference page for more information.

Use the freqresp method to compute the frequency response of the fitted data. To validate the
model fit, plot the transfer function of the original data and the frequency response of the fitted data.

Resp = freqresp(RationalFunc, Freq)
plot(Freq, 20*logl@(abs(TransFunc)), 'r',
Freq, 20*logl0(abs(Resp)), 'b--

ylabel('Magnitude of H(s) (decibels
xlabel('Frequency (Hz)');
legend('Original', 'Fitting result');

title(['Rational fitting with ', int2str(nPoles), ' poles'l]);

)

)5;

Compute and Plot the Time-Domain Response

You use the timeresp method to compute the time-domain response of the transfer function that
RationalFunc represents.

The following code illustrates how to create a random input signal, compute the time-domain
response of RationalFunc to the input signal, and plot the results.

SampleTime=1le-11;

NumberOfSamples=4750;

OverSamplingFactor = 25;

InputTime = double((1:NumberOfSamples)')*SampleTime;

Analyze and Plot RF Components

InputSignal = ...

sign(randn(l, ceil(NumberOfSamples/OverSamplingFactor)));
InputSignal = repmat(InputSignal, [OverSamplingFactor, 1]);
InputSignal = InputSignal(:);

[tresp,t]=timeresp(RationalFunc, InputSignal,SampleTime);
plot(t*1le9,tresp);

title('Fitting Time-Domain Response', 'fonts', 12);
ylabel('Response to Random Input Signal');

xlabel('Time (ns)');

For more information about computing the time response of a model object, see the timeresp
reference page.

2-25

2 Model an RF Component

Export Component Data to a File

2-26

In this section...

“Available Export Formats” on page 2-26
“How to Export Object Data” on page 2-26

“Export Object Data” on page 2-27

Available Export Formats

RF Toolbox software lets you export data from any rfckt object or from an rfdata.data object to
industry-standard data files and MathWorks AMP files. This export capability lets you store data for
use in other simulations.

Note The toolbox also lets you export data from an rfmodel object to a Verilog-A file. For
information on how to do this, see “Export a Verilog-A Model” on page 3-4.

You can export data to the following file formats:

* Industry-standard file formats — Touchstone SNP, YNP, ZNP, HNP, and GNP formats specify the
network parameters and noise information for measured and simulated data.

For more information about Touchstone files, see https://ibis.org/connector/
touchstone specll.pdf.

* MathWorks amplifier (AMP) file format — Specifies amplifier network parameters, output power
versus input power, noise data and third-order intercept point.

For more information about .amp files, see “AMP File Data Sections” on page 5-2.

How to Export Object Data

To export data from a circuit or data object, use a write command of the form
status = write(obj,'filename');
where

* status is a return value that indicates whether the write operation was successful.
* obj is the handle of the circuit or rfdata.data object.
» filename is the name of the file that contains the data.

For example,
status = write(rfckt.amplifier, 'myamp.amp');

exports data from an rfckt.amplifier object to the file myamp.amp.

https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf

Export Component Data to a File

Export Object Data

In this example, use the toolbox to create a vector of S-parameter data, store it in an rfdata.data
object, and export it to a Touchstone file.

At the MATLAB prompt:

1

Type the following to create a vector, s_vec, of S-parameter values at three frequency values:

s vec(:,:,1) = ...
[-0.724725-0.481324i, -0.685727+1.7826601i;
0.000000+0.0000001, -0.074122-0.3215681i1;
s vec(:,:,2) = ...
[-0.731774-0.471453i, -0.655990+1.7980411i;
0.001399+0.0004631, -0.076091-0.31902511];
s vec(:,:,3) = ...
[-0.738760-0.461585i, -0.626185+1.813092i;
0.002733+0.0008871i, -0.077999-0.3164881i1];

Type the following to create an rfdata.data object called txdata with the default property
values:

txdata = rfdata.data;
Type the following to set the S-parameter values of txdata to the values you specified in s_vec:

txdata.S Parameters = s vec;
Type the following to set the frequency values of txdata to [1e9 2e9 3e9]:

txdata.Freq=1e9*[1 2 3];
Type the following to export the data in txdata to a Touchstone file called test.s2p:

write(txdata, 'test')

2-27

2 Model an RF Component

Basic Operations with RF Objects

2-28

Read and Analyze RF Data from a Touchstone Data File

In this example, you create an sparameters object by reading the S-Parameters of a 2-port passive
network stored in the Touchstone format data file, passive.s2p.

Read S-Parameter data from a data file. Use the RF Toolbox™ sparameters command to read the
Touchstone data file, passive.s2p. This file contains 50-ohm S-Parameters at frequencies ranging from
315 kHz to 6 GHz. This operation creates an sparameters object, S 50, and stores data from the file
in the object's properties.

S 50 = sparameters('passive.s2p');

Use sparameters to convert the 50-ohm S-Parameters in the sparameters object, to 75-ohm S-
Parameters and save them in the variable S 75. You can easily convert between parameters, for
example, for Y-Parameters from the sparameters object use yparameters and save them in the
variable Y.

Znew = 75;
S 75 = sparameters(S 50, Znew);
Y = yparameters(S_75);

Plot the S11 parameters. Use the smithplot command to plot the 75-ohm S11 parameters on a
Smith® Chart:

smithplot(S_75,1,1)

+1

Basic Operations with RF Objects

View the 75-ohm S-Parameters and Y-Parameters at 6 GHz. Type the following set of commands at the
MATLAB® prompt to display the 2-port 75-ohm S-Parameter values and the 2-port Y-Parameter
values at 6 GHz.

freq
.f:

S 50.Frequencies;
freq(end)

f = 6.0000e+09
s 6GHz = S 75.Parameters(:,:,end)
s 6GHz = 2x2 complex
-0.0764 - 0.5401i 0.6087 - 0.3018i
0.6094 - 0.3020i -0.1211 - 0.52231
y 6GHz = Y.Parameters(:,:,end)
y 6GHz = 2x2 complex

0.0210 + 0.02521 -0.0215 - 0.01841
-0.0215 - 0.01851 0.0224 + 0.02661

For more information, see the sparameters, yparameters, smithplot reference pages.

De-Embed S-Parameters

The Touchstone data file samplebjt2.s2p contains S-Parameter data collected from a bipolar transistor
in a test fixture. The input of the fixture has a bond wire connected to a bond pad. The output of the
fixture has a bond pad connected to a bond wire.

The configuration of the bipolar transistor, which is the device under test (DUT), and the fixture is
shown in the following figure.

nH 1nH
ML MY
100 fF —— ouT ——100 fF

In this example, you remove the effects of the fixture and extract the S-parameters of the DUT.

Create RF circuit objects.

Create a sparameters object for the measured S-Parameters by reading the Touchstone data file
samplebjt2.s2p. Then, create two more circuit objects, one each for the input pad and output pad.

measured data = sparameters('samplebjt2.s2p');

L left = inductor(le-9);
C left = capacitor(100e-15);
input pad = circuit('inputpad');

2-29

2 Model an RF Component

2-30

add(input pad,[1 2],L left)
add(input pad,[2 0],C left)
setports(input pad,[1 0],[2 0O])

L right = inductor(le-9);
C right = capacitor(100e-15);
output pad = circuit('outputpad');

add (output pad,[3 0],C right)
add (output pad,[3 4],L right)
setports(output pad,[3 0],[4 0])

Analyze the input pad and output pad circuit objects. Analyze the circuit objects at the frequencies at
which the S-Parameters are measured.

freq
input pad sparams
output pad sparams

measured data.Frequencies;
sparameters(input pad, freq);
sparameters(output pad, freq);

De-embed the S-parameters.

Extract the S-Parameters of the DUT from the measured S-Parameters by removing the effects of the
input and output pads.

de_embedded sparams = deembedsparams(measured data, ...
input _pad sparams, output pad sparams);

Plot the measured and de-embedded S11 parameters. Type the following set of commands at the
MATLAB® prompt to plot both the measured and the de-embedded S11 parameters on a Z Smith®
Chart:

figure;

smithplot(measured data,l1l,1);

hold on

h smithplot(de embedded sparams,1,1);

h.LineStyle
h.ColorOrder
h.LegendLabels

{5
[100;001];
{'Measured S11', 'De-embedded S11'};

Basic Operations with RF Objects

Measured 511
— — —De-embedded 511

+1

Plot the measured and de-embedded S22 parameters. Type the following set of commands at the
MATLAB® prompt to plot the measured and the de-embedded S22 parameters on a Z Smith® Chart:

figure;

smithplot(measured data,2,2);

hold on

h = smithplot(de _embedded sparams,2,2);
h.LineStyle ={'-";":'};

h.ColorQOrder =[100;001];

h.LegendLabels {'Measured S22', 'De-embedded S22'};

2-31

2 Model an RF Component

Measured S22
........... De-embedded 522

+j‘|

Plot the measured and de-embedded S21 parameters. Type the following set of commands at the
MATLAB® prompt to plot the measured and the de-embedded S21 parameters, in decibels, on an XY
plane:

figure

rfplot(measured data,2,1,'db','r');

hold on

rfplot(de_embedded sparams,2,1,'db',':b');
legend('Measured S {21}', 'De-embedded S {21}');

2-32

Basic Operations with RF Objects

24

Magnitude (dB)
= 3 > 3

=
3

10

Measured 521
De-embedded 821

2.5

3 35 4
Frequency (GHz)

2-33

Export Verilog-A Models

* “Model RF Objects Using Verilog-A” on page 3-2
» “Export a Verilog-A Model” on page 3-4

3 Export Verilog-A Models

Model RF Objects Using Verilog-A

3-2

In this section...

“Overview” on page 3-2
“Behavioral Modeling Using Verilog-A” on page 3-2

“Supported Verilog-A Models” on page 3-2

Overview

Verilog-A is a language for modeling the high-level behavior of analog components and networks.
Verilog-A describes components mathematically, for fast and accurate simulation.

RF Toolbox software lets you export a Verilog-A description of your circuit. You can create a Verilog-A
model of any passive RF component or network and use it as a behavioral model for transient analysis
in a third-party circuit simulator. This capability is useful in signal integrity engineering. For example,
you can import the measured four-port S-parameters of a backplane into the toolbox, export a
Verilog-A model of the backplane to a circuit simulator, and use the model to determine the
performance of your driver and receiver circuitry when they are communicating across the
backplane.

Behavioral Modeling Using Verilog-A

The Verilog-A language is a high-level language that uses modules to describe the structure and
behavior of analog systems and their components. A module is a programming building block that
forms an executable specification of the system.

Verilog-A uses modules to capture high-level analog behavior of components and systems. Modules
describe circuit behavior in terms of

* Input and output nets characterized by predefined Verilog-A disciplines that describe the
attributes of the nets.

* Equations and module parameters that define the relationship between the input and output nets
mathematically.

When you create a Verilog-A model of your circuit, the toolbox writes a Verilog-A module that
specifies circuit's input and output nets and the mathematical equations that describe how the circuit
operates on the input to produce the output.

Supported Verilog-A Models

RF Toolbox software lets you export a Verilog-A model of an rfmodel object. The toolbox provides
one rfmodel object, rfmodel. rational, that you can use to represent any RF component or
network for export to Verilog-A.

The rfmodel. rational object represents components as rational functions in pole-residue form, as
described in the rfmodel. rational reference page. This representation can include complex poles
and residues, which occur in complex-conjugate pairs.

The toolbox implements each rfmodel. rational object as a series of Laplace Transform S-domain
filters in Verilog-A using the numerator-denominator form of the Laplace transform filter:

Model RF Objects Using Verilog-A

where

M is the order of the numerator polynomial.

M is the order of the denominator polynomial.

ny is the coefficient of the kth power of s in the numerator.
dy is the coefficient of the kth power of s in the denominator.

The number of poles in the rational function is related to the number of Laplace transform filters in
the Verilog-A module. However, there is not a one-to-one correspondence between the two. The
difference arises because the toolbox combines each pair of complex-conjugate poles and the
corresponding residues in the rational function to form a Laplace transform numerator and
denominator with real coefficients. the toolbox converts the real poles of the rational function directly
to a Laplace transform filter in numerator-denominator form.

3-3

3 Export Verilog-A Models

Export a Verilog-A Model

3-4

In this section...

“Represent a Circuit Object with a Model Object” on page 3-4
“Write a Verilog-A Module” on page 3-5

Represent a Circuit Object with a Model Object

Before you can write a Verilog-A model of an RF circuit object, you need to create an
rfmodel. rational object to represent the component.

There are two ways to create an RF model object:

* You can fit a rational function model to the component data using the rationalfit function.

* You can use the rfmodel. rational constructor to specify the pole-residue representation of the
component directly.

This section discusses using a rational function model. For more information on using the constructor,
see the rfmodel. rational reference page.

When you use the rationalfit function to create an rfmodel. rational object that represents an
RF component, the arguments you specify affect how quickly the resulting Verilog-A model runs in a
circuit simulator.

You can use the rationalfit function with only the two required arguments. The syntax is:
model obj = rationalfit(freq,data)
where

* model obj is a handle to the rational function model object.
* freq is a vector of frequency values that correspond to the data values.
* data is a vector that contains the data to fit.

For faster simulation, create a model object with the smallest number of poles required to accurately
represent the component. To control the number of poles, use the syntax:

model obj = rationalfit(freq,data,tol,weight,delayfactor)

where

» tol — the relative error-fitting tolerance, in decibels. Specify the largest acceptable tolerance for
your application. Using tighter tolerance values may force the rationalfit function to add more
poles to the model to achieve a better fit.

* weight — a vector that specifies the weighting of the fit at each frequency.

* delayfactor — avalue that controls the amount of delay used to fit the data. Delay introduces a
phase shift in the frequency domain that may require a large number of poles to fit using a
rational function model. When you specify the delay factor, the rationalfit function represents
the delay as an exponential phase shift. This phase shift allows the function to fit the data using
fewer poles.

These arguments are described in detail in the rationalfit function reference page.

Export a Verilog-A Model

Note You can also specify the number of poles directly using the npoles argument. The model
accuracy is not guaranteed with approach, so you should not specify npoles when accuracy is
critical. For more information on the npoles argument, see the rationalfit reference page.

If you plan to integrate the Verilog-A module into a large design for simulation using detailed models,
such as transistor-level circuit models, the simulation time consumed by a Verilog-A module may have
a trivial impact on the overall simulation time. In this case, there is no reason to take the time to
optimize the rational function model of the component.

For more information on the rationalfit function arguments, see the rationalfit reference

page.

Write a Verilog-A Module

You use the writeva method to create a Verilog-A module that describes the RF model object. This
method writes the module to a specified file. Use the syntax:

status = writeva(model obj,'objl',{'inp',"'inn'},{'outp','outn'})

to write a Verilog-A module for the model object model obj to the file obj1l.va. The module has
differential input nets, inp and inn, and differential output nets, outp and outn. The method
returns status, a logical value of true if the operation is successful and false otherwise.

The write reference page describes the method arguments in detail.

An example of exporting a Verilog-A module appears in the RF Toolbox example, Modeling a High-
Speed Backplane (Part 5: Rational Function Model to a Verilog-A Module).

matlab:showdemo generate_veriloga.m
matlab:showdemo generate_veriloga.m

The RF Design and Analysis Tool

* “The RF Design and Analysis Tool” on page 4-2
* “Create and Import Circuits” on page 4-5

* “Modify Component Data” on page 4-14

* “Analyze Circuits” on page 4-15

» “Export RF Objects” on page 4-18

* “Manage Circuits and Sessions” on page 4-21

* “Model an RF Network” on page 4-24

4 TherrF Design and Analysis Tool

The RF Design and Analysis Tool

4-2

In this section...

“What is the RF Design and Analysis App?” on page 4-2
“Open the RF Design and Analysis App” on page 4-2
“The RF Design and Analysis Window” on page 4-2

“The RF Design and Analysis App Workflow” on page 4-3

What is the RF Design and Analysis App?

The RF Design and Analysis is an app that provides a visual interface for creating and analyzing RF
components and networks. You can use the RF Design and Analysis app as a convenient alternative to
the command-line RF circuit design and analysis objects and methods that come with RF Toolbox
software.

The RF Design and Analysis app provides the ability to

* Create and import circuits.

* Set circuit parameters.

* Analyze circuits.

» Display circuit S-parameters in tabular form and on X< plots, polar plots, and Smith Charts.
* Export circuit data to the MATLAB workspace and to data files.

Open the RF Design and Analysis App
To open the app window, type the following at the MATLAB prompt:
rftool

For a description of the RF Design and Analysis user interface , see “The RF Design and Analysis
Window” on page 4-2. To learn how to create and import circuits, see “Create and Import Circuits”
on page 4-5.

Note The work you do with this app is organized into sessions. Each session is a collection of
independent RF circuits, which can be RF components or RF networks. You can save sessions and
then load them for later use. For more information, see “Working with the RF Design and Analysis
App Sessions” on page 4-22.

The RF Design and Analysis Window
The app window consists of the following three panes:
* RF Component List

Shows the components and networks in the session. The top-level node is the session.

* Component Parameters

The RF Design and Analysis Tool

Displays options and settings pertaining to the node you selected in the RF Component List
pane.

* Analysis
Displays options and settings pertaining to the circuit analysis and results display. After you
analyze the circuit, this pane displays the analysis results and provides an interface for you to
view the S-parameter data and modify the displayed plots.

The following figure shows the app window.

4 RF Design and Analysis

[=1=]==]
File Window Help
RF Component List Compenent Parameters.
" . Name: Type. RF Tool Session
[FYuntitled session untitied session
A
Analysis
Frequency: |[1eg:5e6:2e9] Reference impedance: 50 View: Data
@ Plots
Smith Chart XY Plot

Polar Piot
Z Chart - ¥ options: Log (dB) = |Magnitude =

X options: Linear e

Magnitude (decibels)
o

#sn Fls12) [#] s22 [F 511 [Fl 512 [F] s22 El 511 ¥ 512] [F] s22

The RF Design and Analysis App Workflow

When you analyze a circuit using the app user interface your workflow might include the following
tasks:

1 Build the circuit by

* Creating RF components and networks.
* Importing components and networks from the MATLAB workspace or from a data file.

See “Create and Import Circuits” on page 4-5.
2 Specify component data.

See “Modify Component Data” on page 4-14.

4-3

4 TherrF Design and Analysis Tool

4-4

Analyze the circuit.

See “Analyze Circuits” on page 4-15.
Export the circuit to the MATLAB workspace or to a file.

See “Export RF Objects” on page 4-18.

Create and Import Circuits

Create and Import Circuits

In this section...

“Circuits in the RF Design and Analysis App” on page 4-5

“Create RF Components” on page 4-5

“Create RF Networks” on page 4-7

“Import RF Objects into the RF Design and Analysis App” on page 4-11

Circuits in the RF Design and Analysis App

In this app, you can create circuits that include RF components and RF networks. Networks can
contain both components and other networks.

Note In the circuit object command line interface, you create networks by building components and
then connecting them together to form a network. In contrast, you build networks in the app by
creating a network and then populating it with components.

Create RF Components

This section contains the following topics:

* “Available RF Components” on page 4-5
* “Add an RF Component to a Session” on page 4-6

Available RF Components

The following table lists the RF components you can create using the app and the corresponding RF
Toolbox object.

RF Component Corresponding RF Object
Data File rfckt.datafile

Delay Line rfckt.delay

Coaxial Transmission Line rfckt.coaxial
Coplanar Waveguide Transmission Line rfckt.cpw

Microstrip Transmission Line rfckt.mixer
Parallel-Plate Transmission Line rfckt.parallelplate
Transmission Line rfckt.txline
Two-Wire Transmission Line rfckt.twowire

Series RLC rfckt.seriesrlc
Shunt RLC rfckt.shuntrlc

LC Bandpass Pi rfckt.lcbandpasspi
LC Bandpass Tee rfckt.lcbandpasstee
LC Bandstop Pi rfckt.lcbandstoppi

4 TherrF Design and Analysis Tool

RF Component Corresponding RF Object
LC Bandstop Tee rfckt.lcbandstoptee
LC Highpass Pi rfckt.lchighpasspi

LC Highpass Tee rfckt.lchighpasstee
LC Lowpass Pi rfckt.lclowpasspi

LC Lowpass Tee rfckt.lclowpasspi

Add an RF Component to a Session

1 Inthe RF Component List pane, click Add to open the Create Network or Component dialog
box.

[4\] Create Metwork or Component == | == |

Create RF Network or Compoenent
(©) Component @ Metwork

Network Name: |Network

Metwork Type: |Cascaded Network x|

In the Create Network or Component dialog box, select Component.

In the Component Name field, enter a name for the component. This name is used to identify
the component in the RF Component List pane. For example, Microstrip Component.

4 From the Component Type menu, select the type of RF component you want to create. For
example, Microstrip Transmission Line.

4-6

Create and Import Circuits

r

[4] Create Network or Component [= = |[=]

Create RF Network or Component
@ Component () Network

Component Name: |Microstrip Component

Component Type: | Microstrip Transmission Line v:
Parameter name Value

1 Width (m) .ooo6 -
2 [Height (m) 0.000635
3 |Thickness (m) 5e-06
4 |EpsilonR 9.8 =
5 |Loss tangent of dielectric 0
6 |Conductivity of conductor (5/m) Inf
7 |Line Length (m) 0.01 i
8 |Stub Mode MotAStub hd

5 Adjust the parameter values as necessary.

Note You can accept the default values for some or all of the parameters and then change them
later. For information on modifying the parameter values of an existing component, see “Modify
Component Data” on page 4-14.

6 Click OK.

The app adds the component to your session.

RF Component List

Be untitled session

i Microstrip Component

[Add] ’ Delete

Create RF Networks

You create an RF network using the app by adding a network to the session and then adding
components to the network.

This section contains the following topics:

* “Available RF Networks” on page 4-8
* “Add an RF Network to a Session” on page 4-8

4 TherrF Design and Analysis Tool

» “Populate an RF Network” on page 4-9
* “Reorder Circuits Within a Network” on page 4-11

Available RF Networks

The following table lists the RF networks you can create using the app.

RF Network Corresponding RF Toolbox Object
Cascaded Network rfckt.cascade

Series Connected Network rfckt.series

Parallel Connected Network rfckt.parallel

Hybrid Connected Network rfckt.hybrid

Inverse Hybrid Connected Network rfckt.hybridg

Add an RF Network to a Session

1 Inthe RF Component List pane, click Add to open the Create Network or Component dialog

box.
4| Create Network or Component EI = @
Create RF Metwork or Component
_) Component @ Network
Network Name: |Network
Metwork Type: |Cascaded Network x|

In the Create Network or Component dialog box, select the Network option button.

In the Network Name field, enter a name for the component. This name is used to identify the
network in the RF Component List pane. For example, Series].

4 From the Network Type menu, select the type of RF network you want to create. For example,
Series Connected Network.

4-8

Create and Import Circuits

[4] Create Network or Compenent [=] = [=]

Create RF Network or Compenent

(©) Component @ Metwork

Network Name: | Series1

Metwork Type: |Series Connected Network

5 Click OK.

The RF Component List pane shows the new network.

RF Component List

Bﬁ untitled session
G- 6 Seriesl

’ Add] ’ Delste

Populate an RF Network

After you create a network using the app, you must populate it with RF components and networks.
You insert a component or network into a network in much the same way you add one to a session.

To populate an RF network:

1 In the RF Component List pane, select the network component you want to modify. Then, in the

Component Parameters pane, click Insert.

4 TherrF Design and Analysis Tool

& RF Design and Analysis™ ==
File Window Help
RF Companent List Companent Parametars
=@ untitled session Hame: senest Type Series Connected Network
& Seriesl

msart

Insert component

Asd Deiste

The Insert Component or Network dialog box appears.

(4 Insert Compeonent or Network [= = |[=2]

Insert RF Component or Network

@ Component () Network

Component Name: |Component

Component Type: |Delay Line o
Parameter name Value
1 [Z0 (ohms) 50
2 |Loss (dB/m) 0
3 [Time Delay le-12

2 Click Component or Network in the Insert Component or Network dialog box to add either a
component or a network.

Enter the component or network name, and select the appropriate type. If you are inserting a
component, modify the parameter values as necessary. See “Add an RF Component to a Session”
on page 4-6 or “Add an RF Network to a Session” on page 4-8 for details.

As you insert components and networks into a network, they are reflected in the RF Component List
and Component Parameters panes. The figure below shows an example of a cascaded network that
contains two components and a network. The subnetwork, in turn, contains two components.

RF Component List Component Parameters.
E-8 untitled session Name: | etwork RS ak B
B Network
-a Component Parameter name Value
-l Componentl . 8
=Bl Networkl 1 [Compenent Transmission Line
-] Component2 2 |Componentl Transmission Line
: 3 |Metworkl Cascaded Network
8 Component3
A

4-10

Create and Import Circuits

Reorder Circuits Within a Network
To change the order of the components and networks within a network:

1 In the RF Component List pane, select the network whose circuits you want to reorder.
2 Inthe Component Parameters pane, select the circuit whose position you want to change.
3 Click Up or Down until the circuit is where you want it.

To reverse the positions of Componentl and Network1l in the network shown in the following figure:

1 Select Network in the RF Component List pane.
2 Select Componentl in the Component Parameters pane.
3 Click Down in the Component Parameters pane.

RF Component List Compenent Parameters

Name: Type: Cascaded Network
=88 untitled session Network

—ﬁ Network
i & Component

i@ C tl Parameter name Value
i omponen
-6 Natwpnrkl 1 |Component Transmission Line | insert |

2 [Componentl Transmission Line
3 |Metworkl Cascaded Network

up

| Move selected component down

| [apay |

asd | | Dpeete

Import RF Objects into the RF Design and Analysis App

The RF Design and Analysis app lets you import RF objects from your workspace and from files to the
top level of your session. You can import the following types of objects:

* Complex component and network objects that you created in your workspace using RF Toolbox
objects.

» Components and networks you exported into your workspace from another session.

For information on exporting components and networks from another session, see “Export RF
Objects” on page 4-18.

After you have imported an object, you can change its name and work with it as you would any other
component or network.

This section contains the following topics:

* “Import from the Workspace” on page 4-11
* “Import from a File into a Session” on page 4-12
* “Import from a File into a Network” on page 4-13

Import from the Workspace

To import RF circuit objects from the MATLAB workspace into your session:

1 Select Import From Workspace from the File menu. The Import from Workspace dialog box
appears. This dialog box lists the handles of all RF circuit (rfckt) objects in the workspace.

4-11

4 TherrF Design and Analysis Tool

[Impert from Workspace
RF Objects in Workspace

Icbandpasspi

2 From the list of RF circuit objects, select the object you want to import, and click OK.

The object is added to your session with the same name as the object handle. If there is already a
circuit by that name, the app appends a numeral, starting with 1, to the new circuit name.

Import from a File into a Session

You can import RF components from the following types of files into the top level of your session:

+ S2P
* Y2P
« Z2P
+ H2P

To import a component from one of these files:

1 Select Import From File from the File menu. A file browser appears.
2 Select the file type you want to import.
3 Select the name of the file to import from the list of files in the browser.

y
Impeet from File B |
@'\-\..)' s O8Disk (C1) o Program Files » MATLAE » RX0ddb » toolbos v o & rnetparamides - |y h ifmetparoenfile o
Oganize = Mo ke = - i ®
r Favorites Mame Diate modified pe Size
Pralolic 1] defauli.clp
B Deikiop defautbandpass.sip
Dowrlosds 7] InsdatasZp
Mathmoris ! meeasuned.cip
4. Recent Places 1 passheslp
£ Vidys Gopalekrishs T reCHa pip 000 WGELANITIEPM
toolbes samplebjil s2p
1 semplebjiZalp
o Libraries 1) sampleinal op
+ Documents ! traremitamps2p
w' Music
| Pictures
B videos
% Compuber
File name: {"alpl i
Open | Cancel

4-12

Create and Import Circuits

4 Click Open to add the object to your session as a component.

RF Component List Component Parameters

s . Name: Type: Data File
=&l untitled session defautt

’ @ Component

Y]

Parameter name Value

1 [Interpolation Linear
2 |File Narne default.s2p

I Add J I Delete I

The name of the component is the file name without the extension. If there is already a
component by that name, the app appends a numeral, starting with 1, to the new component
name. The file name, including the extension, appears as the value of the component's File
Name parameter. If the file is not on the MATLAB path, the value of the File Name parameter
also contains the file path.

Import from a File into a Network

You can import RF components from the following types of files into a network:

+ S2P
* Y2P
o Z2P
 H2P

To import an RF component from a file into a network:

1 Insert a Data File component into the network.
For more information on how add a component to a network, see “Populate an RF Network” on
page 4-9.
2 Specify the name of the file from which to import the component in one of two ways:
* Select the file name in the file name and type in the Import from File dialog box, and click
Open.

* Click Cancel to get out of the Import from File dialog box, and enter the file name in the
Value field across from the File Name parameter in the Insert Component or Network dialog
box.

“Model an RF Network” on page 4-24 shows this process.

4-13

4 TherrF Design and Analysis Tool

Modify Component Data

4-14

You can change the values of component parameters that you create and import. The component
parameters in the app correspond to the component properties that you specify in the command line.

To modify these values:

Select the component in the RF Component List pane.

In the Component Parameters pane, select the value you want to change, and enter the new
value.

Valid values for component parameters are listed on the corresponding RF Toolbox reference
page. Use the links in “Available RF Components” on page 4-5 and “Available RF Networks” on
page 4-8 to access these pages.

3 Click Apply.

Analyze Circuits

Analyze Circuits

After you add your circuits, you can analyze them using the app:

1 Select the component or network you want to analyze in the RF Component List pane of the RF
Design and Analysis app.

RF Component List Component Parameters:

Type Data File

M
BG untitled session ame it
8 Component
-~ M Parameter name Value
1 [nterpolation Linear
2 |File Name defaults2p
Al

2 In the Analysis pane:
* Enter [1e8:5e6:2e9], the analysis frequency range and step size in hertz, in the Frequency
field.

This value specifies an analysis from 0.1 GHz to 2 GHz in 5 MHz steps.
* Enter 50, the reference impedance in ohms, in the Reference impedance field.

Analysis

Frequency: | [1e8:5e6:2e0) Reference impedance: =]

Note Alternately, you can specify the Frequency and Reference impedance values as
MATLAB workspace variables or as valid MATLAB expressions.

3 Click Analyze.

The Analysis pane displays a Smith Chart, an XY plot, and a polar plot of the analyzed circuit.

4-15

4 TherrF Design and Analysis Tool

"4 RF Design and Analysis* [= @]=]
File Window Help
RF Component List Compenent Parameters.
Ni 3 Type: LC Bandpass Pi
-8 untitled session ame: Component
@
Parameter name Value
1L H) 1.4446e-09 4.3940e-08 1444609 et
2|C(F) 3.5785e-11 1.1762e-12 3.5785e-11 up
Down
A
Analysis
Frequency: 1e+08:5e+06:2e+09 Reference impedance: 50 view:) Data
@ Plots
Smith Chart XY Plot Polar Piot
Z Chart - ¥ options: Log (dB) = Magnitude >
X options: Linear '.
-0.0000
o
g -20.0000
3
3 -40.0000
2
3 -60.0000
7 -80.0000
-100 l
0.5 1 15 2
Freq [GHz]
[# s Fls12 [E [#] s22 [F] 511 [F] s12 [F] sz2 [Fl 511 [512 = [F] s22

4 Select or deselect the S-parameter check boxes at the bottom of each plot to customize the
parameters that the plot displays. Use the drop-down list at the top of each plot to customize the
plot options.

The plots automatically update as you change the check box and drop-down list options on the
user interface.

5 Click Data in the upper-right corner of the Analysis pane to view the data in tabular form. The
following figure shows the analysis data for the LC Bandpass Pi component at the frequencies
and reference impedance shown in step 2.

4-16

Analyze Circuits

4| RF Design and Analysis™
File Window Help

RF Component List

=-@ untitled session

g g Componert]

Compenent Parameters.

Mame: \component

Type:

LC Bandpass Pi

Parameter name

1LH

Value

1.4446e-00 4.3940e-08 1.4446e-09

2 |(C(F)

3.5785e-11 1.1762e-12 3.5785e-11

Analysis
Frequency: |1e+08:5e+06:2e+09 Reference impedance: 50 View:
©) Piots
Freq 20loglo|sL1| <511 2Dloglo}s21| <21 Wloglofs12| <512 logl0}s22| <522
1flees 0000 177875 91722 92125 01722 -92.125 -0.000 177875 -
2 L05e+08 -0.000 177764 -90.394 -92.2% -90.39 -92.23% -0.000 177764
3 [Llev08 -0.000 177652 -89.122 -92348 89122 -92.348 -0.000 177652
4 115e+08 -0.000 177539 -87.901 -92461 -87.901 -92.461 -0.000 17753
5 1.2e+08 -0.000 177426 86727 92574 86727 02574 -0.000 177426
6 1.25e+08 -0.000 77312 -85.505 92688 85595 92688 -0.000 177312
7 13e-08 -0.000 177196 84501 -92.804 -84.501 -02.804 -0.000 +177.1%
8 L35e+08 -0.000 +177.080 83443 -92920 83443 -92920 -0.000 +177.080
9 [L4e+08 -0.000 +176.963 -82418 -93.037 -82418 -93.037 -0.000 +176.963
10 145¢+08 -0.000 176844 81423 93156 81423 -93156 -0.000 1765844
11 15e+08 -0.000 176725 80456 -93.275 80456 -93.275 -0.000 176725
12 1.55¢+08 -0.000 176,604 -719.515 -93.39% 79515 -93.396 -0.000 176,604
13 16e+08 -0.000 176483 78508 93517 78508 03517 -0.000 176483
14 1.65¢+08 -0.000 +176.359 77703 93641 77703 03641 -0.000 +176.359
15 1.7e+08 -0.000 +176.235 -76.829 -93.765 76829 -93.765 -0.000 +176.235
16 1.75¢+08 -0.000 +176109 15974 93891 15974 -93.891 -0.000 +176.109
171.8e+08 -0.000 +175.982 -715137 94,018 15137 -94,018 -0.000 +175.982 Z

Note The magnitude, in decibels, of S;; is listed in the 20log10[S11] column and the phase, in
degrees, of S;; is listed in the <S11 column.

4-17

4 TherrF Design and Analysis Tool

Export RF Objects

4-18

In this section...

“Export Components and Networks” on page 4-18
“Export to the Workspace” on page 4-18

“Export to a File” on page 4-19

Export Components and Networks

You can export RF components and networks that you create and refine it in the RF Design and
Analysis app to your MATLAB workspace or to files. You export circuits for the following reasons:

» To perform additional analysis using RF Toolbox functions that are not available in the app.
* To incorporate them into larger RF systems.
* To import them into another session.

Export to the Workspace

The RF Design and Analysis app enables you to export components and networks to the MATLAB
workspace. In your workspace, you can use the resulting circuit (rfckt) object as you would any
other RF circuit object.

To export a component or network to the workspace:

1 Select the component or network to export in the RF Component List pane of the app.

RF Component List

=@ untitled session

----- 7] Component

—ﬁ Metwork
' -----] Componentl

------] Component2

[Add J I Delete I

Select Export to Workspace from the File menu.

Enter a name for the exported object's handle in the Variable name field and click OK. The
default name is the name of the component or network prefaced with the character vector
"rft .

Export RF Objects

?l Export to Workspace E [=] @

ariable name: |rft_Componenti

The component or network becomes accessible in the workspace via the specified object handle.

Workspace

MName = Walue

ft_Componentl 1xl twowire

Export to a File

The RF Design and Analysis app lets you export components and networks to files in S2P format.

Note You must analyze a component or network in the RF Design and Analysis app before you can
export it to a file. See “Analyze Circuits” on page 4-15 for more information.

To export a component or network to a file:

1 Select the component or network to export in the RF Component List pane of the app.

RF Component List

-8 untitled session

----- 7] Component

= & Network
' -----] Componentl

------] Component2

[Add] [Delete l

2 Select Export To File from the File menu to open the file browser.

4-19

4 TherrF Design and Analysis Tool

4-20

o Expurt 1o Fie

Organize = Pew folder

[Favorites
L Public

B8 Desking

& Dewnleads

Bathweorks

2L Fecent Places
B Vidya Gopalakisl
L toolbox

4 Librames
& Decurments.

o Music

] Pictures

B velees

B Computer
&, ostiskic)

o Amred 7 s
Save nr_,pr.l sdph

& Hide Folders

@.:_;..a = OSTisk({C) » Program Fies ¢ MATLAB » RINIAB ¢ toolkox & 4 ¢ dretpereenfiles

Marr

2] defaultislp
1, defaukbandpassdp
2] insdata.skp

mewsured.slp

=) pasveslp
1, receivesmp.slp
3] sarnpletgtl i2p

| samplebjils2p

1] samplefral s2p
5 transentamp.slp

File namme: rft_Componentladp

[cnce | |

Browse to the appropriate directory. Enter the name you want to give the file and click Save.

The default file name is the current name of the component or network prefaced with the

character vector 'rft_'. The app also converts any characters that are not alphanumeric to
underscores ().

Manage Circuits and Sessions

Manage Circuits and Sessions

In this section...

“Working with Circuits” on page 4-21
“Working with the RF Design and Analysis App Sessions” on page 4-22

Working with Circuits

In addition to building and specifying circuits, the RF Design and Analysis app window allows you to
perform the following tasks:

* “Delete a Circuit” on page 4-21

* “Rename a Circuit” on page 4-21
Delete a Circuit

To delete a circuit from your session:

1 Select the circuit in the RF Component List pane.
2 Click Delete.

Note If the circuit you delete is a network, the app deletes the network and everything in the
network.

RF Component List

=@ untitled session

ﬁ Component
Elﬁ Metwork

----- G Componentl

------ G Component2

Add] I Delete I

Analysis Delete selected item

Rename a Circuit

To rename a component or a network:

1 Select the component or network in the RF Component List pane.
2 Type the new name in the Name field of the Component Parameters pane.
3 Click Apply.

4-21

4 TherrF Design and Analysis Tool

4-22

RF Component List Compenent Parameters.

5 5 Name: A Type: Two-Viire Transmission Line
=8l untitled session TwoWire

@ Compenent
B @ Network

3 Parameter name Value
@

- Component2 1 [Radius (m) 0.00067 -
2 |Separation (m) 0.00162

3 |MuR 1

4 |EpsilonR 2.3 Down
5 |Loss tangent of dielectric 0

m

6 [Conductivity of conductor (5/m) Inf

7 Line Length (m) on1 -

Working with the RF Design and Analysis App Sessions

The work you do with the RF Design and Analysis app is organized into sessions. Each session is a
collection of independent RF circuits, which can be RF components or RF networks.

This section contains the following topics:

* “Name or Rename a Session” on page 4-22
* “Save a Session” on page 4-22

* “Open a Session” on page 4-23

» “Start a New Session” on page 4-23

Name or Rename a Session
To name or rename a session:

1 Select the session, or top-level node, in the RF Component List pane. (The session is selected
by default when you open the app user interface.
Type the desired name in the Name field of the Component Parameters pane.

Click Apply.
Save a Session

To save your session, select Save Session or Save Session As from the File menu. The first time you
save a session a browser opens, prompting you for a file name.

Note The default file name is the session name with any characters that are not alphanumeric
converted to underscores (_). The name of the session itself is unchanged.

= Hide folders Sove Cancel

Manage Circuits and Sessions

For example, to save your session as Test. rf in your current working directory, you would type
Test in the File name field as shown above. The RF Design and Analysis app adds the . rf extension
automatically to all the app sessions you save.

If the name of your session is gk's session, the default file name is gk s session.rf.
Open a Session

You can load an existing session into the RF Design and Analysis app by selecting Open Session from
the File menu. A browser enables you to select from your previously saved sessions.

Before opening the requested session, the app prompts you to save your current session.
Start a New Session

To start a new session, select New Session from the File menu. A new session opens in the app. All
its values are set to their defaults.

Before starting a new session, the app prompts you to save your current session.

4-23

4 TherrF Design and Analysis Tool

Model an RF Network

4-24

In this section...

“Overview” on page 4-24

“Start the RF Design and Analysis App” on page 4-24
“Create the Amplifier Network” on page 4-24
“Populate the Amplifier Network” on page 4-25
“Analyze the Amplifier Network” on page 4-28

“Export the Network to the Workspace” on page 4-29

Overview

In this example, you model the gain and noise figure of a cascaded network and then analyze the
network using the RF Design and Analysis app.

The network used in this example consists of an amplifier and two transmission lines. Here, you learn
how to create and analyze the network using the RF Design and Analysis app.

Start the RF Design and Analysis App

Type the following command at the MATLAB prompt to open the app window:

rftool

For more information about this user interface, see “The RF Design and Analysis Window” on page 4-
2.

Create the Amplifier Network

In this part of the example, you create a network to connect the amplifier components in cascade.

1 Inthe RF Component List pane, click Add.

RF Compenent List

-Gl untitled session

Al Delete

The Create Network or Component dialog box opens.
2 In the Create Network or Component dialog box:

Model an RF Network

» Select the Network option button.
* In the Network Name field, enter Amplifier Network.

This name is used to identify the network in the RF Component List pane.

* In the Network Type list, select Cascaded Network.

A Cascaded Network means that when you add components to the network, the app
connects them in cascade.

[4\] Create Metwork or Component == | == |

Create RF Network or Compoenent

(©) Component @ Metwork

Network Name: |Network

Metwork Type: |Cascaded Network x|

3 Click OK to add the cascaded network to the session.
The network now appears in the RF Component List pane.

RF Component List

—ii untitled session
+- B Amplifier Network

I Add ‘ [Delete: I

Populate the Amplifier Network

This part of the example shows how to add the following components to the network:

* “Transmission Line 1” on page 4-26

4-25

4 TherrF Design and Analysis Tool

* “Amplifier” on page 4-26
* “Transmission Line 2” on page 4-27
Transmission Line 1

1 Inthe Component Parameters pane, click Insert to open the Insert Component or Network
dialog box.

2 In the Insert Component or Network dialog box:

* Select the Component option button.
* In the Component Name field, enter Short Transmission Line.

This name is used to identify the component in the RF Component List pane.
* In the Component Type drop-down list, select Transmission Line.
* In the Value field across from the Line Length (m) parameter, enter 0.001.

4] Create Network or Component E (=] @

Create RF Network or Component

-

@ Component) Metwork

Component Mame: |Short Transmission Line|

Component Type: | Transmission Line v
Parameter name Value

1 [Line Length (m) 0.01 &
2 |5tub Mode MotAStub
3 |Terminaticn MotApplicable
4 |Freq (Hz) 1000000000 -
5 |20 (ohms) 50 [
6 |Phase Velocity (m,/s) 299792458
7 |Loss (dB/m)]
8 |Interpolation Linear hd

3 Click OK to add the transmission line to the network.
Amplifier

1 In the Component Parameters pane, click Insert to open the Insert Component or Network
dialog box.

2 In the Insert Component or Network dialog box:

4-26

Model an RF Network

3

Select the Component option button.

In the Component Name field, enter Amplifier.

This name is used to identify the component in the RF Component List pane.
In the Component Type list, select Data File.

In the Import from File dialog box that appears, click Cancel . You will specify the name of
the file from which to import data in a later step.

In the Value field across from the Interpolation parameter, enter cubic.

This value tells the app to use cubic interpolation to determine the behavior of the amplifier at
frequency values that are not specified explicitly in the data file.

In the Value field across from the File Name parameter, enter default.amp.

4| Create Network or Component E' =] @

Create RF Network or Component

'@ Component Network

Component Name: |Component

Component Type: | Data File Z|
Parameter name Value
1 |Interpolation cubic
2 |File Name default.amp
oK

Click OK to add the amplifier to the network.

Transmission Line 2

1

In the Component Parameters pane, click Insert to open the Insert Component or Network
dialog box.

In the Insert Component or Network dialog box, perform the following actions:

Select the Component option button.
In the Component Name field, enter Long Transmission Line.

This name is used to identify the component in the RF Component List pane.
In the Component Type list, select Transmission Line.
In the Value field across from the Line Length (m) parameter, enter 0.025.

In the Value field across from the Phase Velocity (m/s) parameter, enter 2. 0e8.

4-27

4 TherrF Design and Analysis Tool

4-28

4| Create Network or Compenent EI = @

Create RF Network or Component

@ Component Network

Component Name: |Long Transmission Line

Component Type: | Transmission Line -
Parameter name Value
1 |Line Length (m) 0.025 -
2 |Stub Mode MotAStub
3 Termination MNot&pplicable
4 |Freq (Hz) 1000000000 L
5|20 (ohms) 50 [
6 Phase Velocity (m/s) P.ﬂag
7 |Loss (dB/m) 0
8§ Interpolation Linear -
oK

3 Click OK to add the transmission line to the network.

Analyze the Amplifier Network

In this part of the example, you specify the range of frequencies over which to analyze the amplifier
network and then run the analysis.

1 In the Analysis pane, change the Frequency entry to [1.0e9:1e7:2.9e9].
This value specifies an analysis from 1 GHz to 2.9 GHz by 10 MHz.
In the Analysis pane, click Analyze to simulate the network at the specified frequencies.

The RF Design and Analysis app displays a Smith Chart, an XY plot, and a polar plot of the analyzed
circuit.

Model an RF Network

[4] RF Design and Analysis* ===
File Window Help

RF Component List Component Parameters.
Name: Type: Cascaded Network
BG untitled session [Ampitfier Network
=88 Amplifier Network
-8 Short Transmission Line
Parameter name Value
-8 Amplifier [nsen |
5 . . 1 [Short Transmission Line Transmission Line
-8 Leng Transmission Line
2 Amplifier Data File
P — —
3 |Long Transmission Line Transmission Line
A
Analysis
Froquency. |1g+09:107:2 9e+08 Refersncs impedance: 50 View: O Data
(@ Piots
Smith Chart XY Plot Polar Plot
Z Chart - Y options: Log (dB) - Magnitude hd
X options: Linear ~
25
o
w 20
=
3
= 15
©
ERL
=
=
g s
=
0
1 1.5 2 25
Freq [GHz]
@ 511 O s12] @ s22 Osn [s12 [s22 Osn @512 O O sz

You can modify the plots by

» Selecting and deselecting the S-parameter check boxes at the bottom of each plot to customize
the parameters that the plot displays.

* Using the drop-down list at the top of each plot to customize the plot options.

Export the Network to the Workspace

The RF Design and Analysis app lets you export components and networks to the workspace as circuit
objects so you can use the RF Toolbox functions to perform additional analysis. This part of the
example shows how to export the amplifier network to the workspace.

1 In the app window, select File > Export to Workspace.
2 In the Variable name field, enter CascadedCkt.

This name is the exported object's handle.

E Export to Workspace EIE@

P

ariable name: |Cascad edck'tl

4-29

4 TherrF Design and Analysis Tool

3 Click OK.

The RF Design and Analysis app exports the amplifier network to an rfckt.cascade object,
with the specified object handle, in the MATLAB workspace.

Workspace

MName = Walue
Cascadedckt 1x1 coscade

4-30

AMP File Format

5 AMP File Format

AMP File Data Sections

5-2

In this section...

“Overview” on page 5-2

“Denoting Comments” on page 5-2

“Data Sections” on page 5-3

“S, Y, or Z Network Parameters” on page 5-3
“Noise Parameters” on page 5-4

“Noise Figure Data” on page 5-5

“Power Data” on page 5-6

“IP3 Data” on page 5-8

“Inconsistent Data Sections” on page 5-9

Overview

The AMP data file describes a single nonlinear device. Its format can contain the following types of
data:

* S,Y, or Z network parameters

* Noise parameters

* Noise figure data

* Power data

+ IP3 data

An AMP file must contain either power data or network parameter data to be valid. To accommodate

analysis at more than one frequency, the file can contain more than one section of power data. Noise
data, noise figure data, and IP3 data are optional.

Note If the file contains both network parameter data and power data, RF Toolbox software checks
the data for consistency. If the amplifier gain computed from the network parameters is not
consistent with the gain computed from the power data, a warning appears.

Two AMP files, samplepal.amp and default.amp, ship with the toolbox to show the AMP format.
They describe a nonlinear 2-port amplifier with noise. See “Model a Cascaded RF Network” for an
example that shows how to use an AMP file.

Denoting Comments
An asterisk (*) or an exclamation point (!) precedes a comment that appears on a separate line.

A semicolon (;) precedes a comment that appears following data on the same line.

matlab:edit default.amp

AMP File Data Sections

Data Sections

Each kind of data resides in its own section. Each section consists of a two-line header followed by
lines of numeric data. Numeric values can be in any valid MATLAB format.

A new header indicates the end of the previous section. The data sections can appear in any order in
the file.

Note In the data section descriptions, brackets ([]) indicate optional data or characters. All values
are case insensitive.

S, Y, or Z Network Parameters
Header Line 1

The first line of the header has the format
Keyword [Parameter] [R[REF][=]value]

Keyword indicates the type of network parameter. Its value can be S[PARAMETERS],
Y[PARAMETERS], or Z[PARAMETERS]. Parameter indicates the form of the data. Its value can be
MA, DB, or RI. The default for S-parameters is MA. The default for Y- and Z-parameters is RI. R[REF]
[=]value is the reference impedance. The default reference impedance is 50 ohms.

Note R[REF][=]value must be a positive real scalar or vector. If R[REF] [=]value is a vector,
then the vector must be equal to the number of network parameter data points or frequency vector.

The following table explains the meaning of the allowable Parameter values.

Parameter Description

MA Data is given in (magnitude, angle) pairs with angle in degrees
(default for S-parameters).

DB Data is given in (dB-magnitude, angle) pairs with angle in degrees.

RI Data is given in (real, imaginary) pairs (default for Y- and Z-
parameters).

This example of a first line indicates that the section contains S-parameter data given in (real,
imaginary) pairs, and that the reference impedance is 50 ohms.

S RI R 50

Header Line 2

The second line of the header has the format
Independent variable Units

The data in a section is a function of the Independent variable. Currently, for S-, Y-, and Z-
parameters, the value of Independent variable is always F[REQ]. Units indicates the default units of
the frequency data. It can be GHz, MHz, or KHz. You must specify Units, but you can override this
default on any given line of data.

5 AMP File Format

This example of a second line indicates that the default units for frequency data is GHz.
FREQ GHZ

Data

The data that follows the header typically consists of nine columns.

The first column contains the frequency points where network parameters are measured. They can
appear in any order. If the frequency is given in units other than those you specified as the default,
you must follow the value with the appropriate units; there should be no intervening spaces. For
example,

FREQ GHZ
1000MHZ
2000MHZ
3000MHZ

Columns two though nine contain 2-port network parameters in the order N11, N21, N12, N22.
Similar to the Touchstone format, each Nnn corresponds to two consecutive columns of data in the
chosen form: MA, DB, or RI. The data can be in any valid MATLAB format.

This example is derived from the file default.amp. A comment line explains the column
arrangement of the data where re indicates real and im indicates imaginary.

S RI R 50

FREQ GHz

* FREQ reS11 imS11 reS21 imS21 reS12 imS12 reS22 imS22
1.00 -0.724725 -0.481324 -0.685727 1.782660 0.000000 0.000000 -0.074122 -0.321568
1.01 -0.731774 -0.471453 -0.655990 1.798041 0.001399 0.000463 -0.076091 -0.319025
1.02 -0.738760 -0.461585 -0.626185 1.813092 0.002733 0.000887 -0.077999 -0.316488

Noise Parameters

Header Line 1

The first line of the header has the format
Keyword

Keyword must be NOI[SE].

Header Line 2

The second line of the header has the format
Variable Units

Variable must be F[REQ]. Units indicates the default units of the frequency data. It can be GHz,
MHz, or KHz. You can override this default on any given line of data. This example of a second line
indicates that frequency data is assumed to be in GHz, unless other units are specified.

FREQ GHz
Data
The data that follows the header must consist of five columns.

The first column contains the frequency points at which noise parameters were measured. The
frequency points can appear in any order. If the frequency is given in units other than those you

AMP File Data Sections

specified as the default, you must follow the value with the appropriate units; there should be no
intervening spaces. For example,

NOI

FREQ GHZ
1000MHZ
2000MHZ
3

4

5

Columns two through five contain, in order,

* Minimum noise figure in decibels

* Magnitude of the source reflection coefficient to realize minimum noise figure

» Phase in degrees of the source reflection coefficient

» Effective noise resistance normalized to the reference impedance of the network parameters

This example is taken from the file default.amp. A comment line explains the column arrangement
of the data.

NOI RN

FREQ GHz

* Freq Fmin(dB) GammmaOpt(MA:Mag) GammmaOpt(MA:Ang) RN/Zo
1.90 10.200000 1.234000 -78.400000 0.240000
1.93 12.300000 1.235000 -68.600000 0.340000
2.06 13.100000 1.254000 -56.700000 0.440000
2.08 13.500000 1.534000 -52.800000 0.540000
2.10 13.900000 1.263000 -44.400000 0.640000

Noise Figure Data
The AMP file format supports the use of frequency-dependent noise figure (NF) data.
Header Line 1

The first line of the header has the format
Keyword [Units]

For noise figure data, Keyword must be NF. The optional Units field indicates the default units of the
NF data. Its value must be dB, i.e., data must be given in decibels.

This example of a first line indicates that the section contains NF data, which is assumed to be in
decibels.

NF
Header Line 2

The second line of the header has the format
Variable Units

Variable must be F[REQ]. Units indicates the default units of the frequency data. It can be GHz,
MHz, or KHz. This example of a second line indicates that frequency data is assumed to be in GHz.

3-5

5 AMP File Format

FREQ GHz
Data
The data that follows the header typically consists of two columns.

The first column contains the frequency points at which the NF data are measured. Frequency points
can appear in any order. For example,

NF

FREQ MHz
2090 ..
2180
2270

Column two contains the corresponding NF data in decibels.

This example is derived from the file samplepal.amp.

NF dB

FREQ GHz

1.900 10.3963213
.000 12.8797965
.100 14.0611765
.200 13.2556751
.300 12.9498642
.400 13.3244309
.500 12.7545104

NNNNNDN

Note If your noise figure data consists of a single scalar value with no associated frequency, that
same value is used for all frequencies. Enter the value in column 1 of the line following header line 2.
You must include the second line of the header, but it is ignored.

Power Data

An AMP file describes power data as input power-dependent output power.
Header Line 1

The first line of the header has the format

Keyword [Units]

For power data, Keyword must be POUT, indicating that this section contains power data. Because
output power is complex, Units indicates the default units of the magnitude of the output power
data. It can be dBW, dBm, mW, or W. The default is W. You can override this default on any given line of
data.

The following table explains the meaning of the allowable Units values.

AMP File Data Sections

Allowable Power Data Units

Units Description

dBw Decibels referenced to one watt
dBm Decibels referenced to one milliwatt
mw Milliwatts

W Watts

This example of a first line indicates that the section contains output power data whose magnitude is
assumed to be in decibels referenced to one milliwatt, unless other units are specified.

POUT dBm

Header Line 2

The second line of the header has the format
Keyword [Units] FREQ[=]value

Keyword must be PIN. Units indicates the default units of the input power data. The default is W.
You can override this default on any given line of data. FREQ[=] value is the frequency point at
which the power is measured. The units of the frequency point must be specified explicitly using the
abbreviations GHz, MHz, kHz, or Hz.

This example of a second line indicates that the section contains input power data that is assumed to
be in decibels referenced to one milliwatt, unless other units are specified. It also indicates that the
power data was measured at a frequency of 2.1E+009 Hz.

PIN dBm FREQ=2.1E+009Hz
Data
The data that follows the header typically consists of three columns:

* The first column contains input power data. The data can appear in any order.
* The second column contains the corresponding output power magnitude.
* The third column contains the output phase shift in degrees.

Note RF Toolbox software does not use the phase data directly. RF Blockset™ blocks use this data
in conjunction with RF Toolbox software to create the AM/PM conversion table for the Equivalent
Baseband library General Amplifier and General Mixer blocks.

If all phases are zero, you can omit the third column. If all phases are zero or omitted, the toolbox
assumes that the small signal phase from the network parameter section of the file
(180*angle(S,;(f))/pi) is the phase for all power levels.

In contrast, if one or more phases in the power data section are nonzero, the toolbox interpolates and
extrapolates the data to determine the phase at all power levels. The small signal phase
(180*angle(S,;,(f))/pi) from the network parameter section is ignored.

Inconsistency between the power data and network parameter sections of the file may cause
incorrect results. To avoid this outcome, verify that the following criteria must is met:

5-7

5 AMP File Format

* The lowest input power value for which power data exists falls in the small signal (linear) region.

* In the power table for each frequency point f, the power gain and phase at the lowest input power
value are equal to 20*10g10(abs(S,;(f))) and 180*angle(S,;(f))/pi, respectively, in the
network parameter section.

If the power is given in units other than those you specified as the default, you must follow the value
with the appropriate units. There should be no intervening spaces.

This example is derived from the file default.amp. A comment line explains the column
arrangement of the data.

POUT dbm

PIN dBm FREQ = 2.10GHz

* Pin Pout Phase(degrees)
0.0 19.28 0.0
1.0 20.27 0.0
2.0 21.26 0.0

Note The file can contain more than one section of power data, with each section corresponding to a
different frequency value. When you analyze data from a file with multiple power data sections,
power data is taken from the frequency point that is closest to the analysis frequency.

IP3 Data

An AMP file can include frequency-dependent, third-order input (IIP3) or output (OIP3) intercept
points.

Header Line 1
The first line of the header has the format
Keyword [Units]

For IP3 data, Keyword can be either IIP3 or 0IP3, indicating that this section contains input IP3
data or output IP3 data. Units indicates the default units of the IP3 data. Valid values are dBW, dBm,
mW, and W. The default is W.

This example of a first line indicates that the section contains input IP3 data which is assumed to be
in decibels referenced to one milliwatt.

IIP3 dBm

Header Line 2

The second line of the header has the format
Variable Units

Variable must be FREQ. Units indicates the default units of the frequency data. Valid values are
GHz, MHz, and KHz. This example of a second line indicates that frequency data is assumed to be in
GHz.

FREQ GHz

AMP File Data Sections

Data
The data that follows the header typically consists of two columns.

The first column contains the frequency points at which the IP3 parameters are measured. Frequency
points can appear in any order.

0IP3
FREQ GHz
2.010
2.020
2.030

Column two contains the corresponding IP3 data.
This example is derived from the file samplepal.amp.
0IP3 dBm

FREQ GHz
2.100 38.8730377

Note If your IP3 data consists of a single scalar value with no associated frequency, then that same
value is used for all frequencies. Enter the value in column 1 of the line following header line 2. You
must include the second line of the header, but the application ignores it.

Inconsistent Data Sections

If an AMP file contains both network parameter data and power data, RF Toolbox software checks the
data for consistency.

The toolbox compares the small-signal amplifier gain defined by the network parameters, S,;, and by
the power data, P,,; - P;,. The discrepancy between the two is computed in dBm using the following
equation:

AP = S71(fp) — Pout(fp) + Pin(fp)

wheref; is the lowest frequency for which power data is specified.

The discrepancy is shown in the following graph.

5-9

5 AMP File Format

--- Small Signal Network Data
s+ Specified Power Data

Pout (48]

AP T

o p, (dbm)

If AP is more than 0.4 dB, a warning appears. Large discrepancies may indicate measurement errors
that require resolution.

5-10

How Tos, Definitions, Algorithms

6 How Tos, Definitions, Algorithms

Determining Parameter Formats

In this section...

“Primary and Secondary Formats” on page 6-2
“Determining Formats for One Parameter” on page 6-3
“Determining Formats for Multiple Parameters” on page 6-3

When you call plotyy without specifying the formats for the specified parameter, plotyy

determines the formats from the primary and secondary formats.

Primary and Secondary Formats

The following table shows the primary and secondary formats for the parameters for all circuit and
data objects. Use the Llistparam method to list the valid parameters for a particular object. Use the
listformat method to list valid formats.

Parameter Primary Format Secondary Format
S11, S12, S21, S22 Magnitude(decibels) Angle(Degrees)
LS11, LS12, LS21, LS22 Magnitude(decibels) Angle(Degrees)
NF Magnitude(decibels) none

0IP3 dBm W

Pout dBm W

Phase Angle(Degrees) none

AM/AM Magnitude(decibels) none

AM/PM Angle(Degrees) none

GammaIn, GammaOut Magnitude(decibels) Angle(Degrees)
Gt, Ga, Gp, Gmag, Gmsg Magnitude(decibels) none

Delta Magnitude(decibels) Angle(Degrees)
TF1, TF2 Magnitude(decibels) Angle(Degrees)
GammaMS, GammaML Magnitude(decibels) Angle(Degrees)
VSWRIn, VSWROut Magnitude(decibels) none
GroupDelay ns none

Fmin Magnitude(decibels) none

GammaOPT Magnitude(decibels) Angle(Degrees)
K, Mu, MuPrime none none

RN none none
PhaseNoise dBc/Hz none

NTemp K none

NFactor none none

6-2

Determining Parameter Formats

Determining Formats for One Parameter

When you specify only one parameter for plotting, plotyy creates the plot as follows:

* The predefined primary format is the format for the left Y-axis.
* The predefined secondary format is the format for the right Y-axis.

If the specified parameter does not have the predefined secondary format, plotyy behaves the same
way as plot, and does not add a second y-axis to the plot.

Determining Formats for Multiple Parameters

To plot multiple parameters on two Y-axes, plotyy tries to find two formats from the predefined
primary and secondary formats for the specified parameters. To be used in the plot, the formats must
meet the following criteria:

* Each format must be a valid format for at least one parameter.

* Each parameter must be plotted at least on one Y-axis.

If cannot meet these criteria,plotyy it issues an error message.
The function uses the following algorithm to determine the two parameters:

Look up the primary and secondary formats for the specified parameters.

If one or more pairs of primary-secondary formats meets the preceding criteria for all
parameters:

* Select the pair that applies to the most parameters.

* Use these formats to create the plot.

Otherwise, proceed to the next step.

3 If no pairs of primary-secondary formats meet the criteria for all parameters, try to find one or
more pairs of primary-primary format that meets the criteria. If one or more pairs of primary-
primary formats meets the preceding criteria for all parameters:

* Select the pair that applies to the most parameters.
* Use these formats to create the plot.

Otherwise, proceed to the next step.

4 If the preceding steps fail to produce a plot, try to find one format from the predefined primary
formats. If a primary format is valid for all parameters, use this format to create the plot with the
MATLAB plot function.

5 If all the preceding steps are not successful, issue an error message.

6-3

RF Toolbox Examples

7 RF Toolbox Examples

Superheterodyne Receiver Using RF Budget Analyzer App

This example shows how to build a superheterodyne receiver and analyze the receiver's RF budget
for gain, noise figure, and IP3 using the RF Budget Analyzer app. The receiver is a part of a
transmitter-receiver system described in the IEEE conference papers, [1] and [2].

Introduction

RF system designers begin the design process with a budget specification for how much gain, noise
figure (NF), and nonlinearity (IP3) the entire system must satisfy. To assure the feasibility of an
architecture modeled as a simple cascade of RF elements, designers calculate both the per-stage and
cascade values of gain, noise figure and IP3 (third-intercept point).

Using the RF Budget Analyzer app, you can:

* Build a cascade of RF elements.

* Calculate the per-stage and cascade output power, gain, noise figure, SNR, and IP3 of the system.
» Export the per-stage and cascade values to the MATLAB™ workspace.

» Export the system design to RF Blockset for simulation.

* Export the system design to RF Blockset measurement testbench as a DUT (device under test)
subsystem and verify the results obtained using the App.

System Architecture

The receiver system architecture designed using the app is:

zan=144E

S

Drasived [F= 4000 He

Fremer=585Hz Ganel5dE Gai=-TB Feetter=d00MHz Gain=40dE Gain=17 54F
Lass=15dE Bwpws=20MHz HF=154E HF=TiE Bwpss=MHz NF=2 515 HF=454E
Isalat=274E IL=14E OIFE=26 OF3=15 IL=14E OIF= CIFS=
—h— —f——
TR_Switch ~ RF_Filter LMNA Gain Demod [F_Filter IF_AMP AGC

LO

The receiver bandwidth is between 5.825 GHz and 5.845 GHz.

Build Superheterodyne Receiver

You can build all the components of the superheterodyne receiver using MATLAB command line and
view the analysis using the RF Budget Analyzer app.

The first components in the superheterodyne receiver system architecture are the antenna and TR
switch. We replace the antenna block with the effective power reaching the switch.

7-2

Superheterodyne Receiver Using RF Budget Analyzer App

1. The system uses the TR switch to switch between the transmitter and the receiver. The switch adds
a loss of 1.3 dB to the system. Create a TRSwitch with a gain of -1.3 dB, and OIP3 of 37 dBm. To
match the RF budget results from reference [1], the noise figure is assumed to be 2.3 dB.

elements(1l) = rfelement('Name', 'TRSwitch', 'Gain',-1.3,'NF',2.3,"'0IP3',37);

2. To model the RF bandpass filter use rffilter to design the filter. From the example “Design IF
Butterworth Bandpass Filter” on page 7-173, load impedance of the filter is found to be 132.986
Ohms. But for budget calculation, each stage is terminated by 50 Ohms internally. Therefore, to
achieve an insertion loss of 1 dB, the input impedance, Zin of the next element, i.e., amplifier, is set to
132.896 Ohms.

Fcenter = 5.8e9;
Bwpass = 20e6;
z = 132.986;

elements(2) = rffilter('ResponseType', 'Bandpass’',
'"FilterType', 'Butterworth', 'FilterOrder',6,
'PassbandAttenuation',10*1ogl0(2),
"Implementation', 'Transfer function',
'PassbandFrequency', [Fcenter-Bwpass/2 Fcenter+Bwpass/2], 'Zout',50,
'Name', 'RF_Filter');

The S-parameters for this filter are not ideal and automatically inserts a loss of approximately -1dB
into the system.

3. Use the amplifier object to model a Low Noise Amplifier block with a gain of 15 dB, noise
figure of 1.5 dB, and OIP3 of 26 dBm.

elements(3) = amplifier('Name','LNA','Gain',15,'NF',1.5,'0IP3"',26,
'Zin',Z);

4. Model a Gain block with a gain of 10.5 dB, noise figure of 3.5 dB, and OIP3 of 23 dBm.
elements(4) = amplifier('Name', 'Gain', 'Gain',10.5,'NF',3.5,'0IP3"',23);

5. The receiver downconverts the RF frequency to an IF frequency of 400 MHz. Use the modulator
object to create Demodulator block with a LO (Local Oscillator) frequency of 5.4 GHz, gain of -7 dB,
noise figure of 7 dB, and OIP3 of 15 dBm.

elements(5) = modulator('Name', 'Demod', 'Gain',-7,'NF',7,'0IP3"',15,
'LO',5.4e9, 'ConverterType', 'Down');

6. To model the RF bandpass filter use rffilter to design the filter.

Fcenter = 400e6;

Bwpass = 5e06;

elements(6) = rffilter('ResponseType', 'Bandpass’',
'"FilterType', 'Butterworth', 'FilterOrder',4,
'PassbandAttenuation',10*1ogl0(2),
"Implementation', 'Transfer function',
'PassbandFrequency', [Fcenter-Bwpass/2 Fcenter+Bwpass/2], 'Zout',b50,
'Name', 'IF Filter');

The S-parameters for this filter are not ideal and automatically inserts a loss of approximately -1dB
into the system.

7. Model an IF Amplifier block with a gain of 40 dB and a noise figure of 2.5 dB.

7 RF Toolbox Examples

Stage
GainT [dB)
MF (B
CIP3 [cBm)

elements(7) = amplifier('Name', 'IFAmp', 'Gain',40,'NF',2.5,'Zin',Z);

8. As seen in the references, the receiver uses an AGC (Automatic Gain Control) block where the gain
varies with the available input power level. For an input power of -80 dB, the AGC gain is at a
maximum of 17.5 dB. Use an Amplifier block to model an AGC. Model an AGC block with a gain of
17.5 dB, noise figure of 4.3 dB, and OIP3 of 36 dBm.

elements(8) = amplifier('Name', 'AGC', 'Gain',17.5,'NF',4.3,'0IP3"',36);

9. Calculate the rbudget of the superheterodyne receiver using the following System Parameters:
5.8 GHz for Input frequency, -80 dB for Available input power, and 20 MHz for Signal
bandwidth. Replace the antenna element with the effective Available input power which is
estimated to be -66 dB reaching the TRswitch

superhet = rfbudget('Elements',elements, 'InputFrequency',5.8e9,
"AvailableInputPower',-66,'SignalBandwidth',20e6)

superhet =
rfbudget with properties:

Elements: [1x8 rf.internal.rfbudget.Element]
InputFrequency: 5.8 GHz
AvailableInputPower: -66 dBm
SignalBandwidth: 20 MHz
Solver: Friis
AutoUpdate: true

Analysis Results

OutputFrequency: (GHz) [5.8 5.8 5.8 5.8 0.4 0.4 0.4
OutputPower: (dBm) [-67.3 -67.3 -53.3 -42.8 -49.8 -49.8 -10.8
TransducerGain: (dB) [-1.3 -1.3 12.7 23.2 16.2 16.2 55.2
NF: (dB) [2.3 2.3 3.531 3.657 3.693 3.693 3.728

IIP2: (dBm) []

0IP2: (dBm) T[]
IIP3: (dBm) [38.3 38.3 13.29 -0.3904 -3.824 -3.824 -3.824
0IP3: (dBm) [37 37 25.99 22.81 12.38 12.38 51.38
SNR: (dB) [32.66 32.66 31.43 31.31 31.27 31.27 31.24

View the analysis in the RF Budget Analyser app.

show(superhet);

G TR TR
NF Y N
IP3 s >
TRSwitch RF _Fitter L& Gain Cremod IF_Filter IF &g Fitele
1 2 3 1 5 6 7 8
1.3 2509e-10 15 105 -7 5.593e-12 40 175
23 a 15 35 7 a 25 43
37 Inf 26 23 13 Inf Inf 36

0.4]
6.7]
72.7]
3.728]

-36.71
36]
31.24]

Superheterodyne Receiver Using RF Budget Analyzer App

Feneric RF Element
Mame TRZwitch
Available Power Gain |-1.3 dE
Moize Figure (2.3 dBE
QIP2 Inf dEm
QIF3 |37 dEm
Input Impedance (20 Ohim
Cutput Impedance |50 Chim
Apply

Select Resuts w Compare “iew

Cascade 1.1 1.2 1.3 1.4 1.5 1.8 1.7 1.8
Fout (GHz) 5.5000 5.8000 5.5000 5.8000 0.4000 0.4000 0.4000 0.4000
Friis-Pout (dBm) H7.3000 H/7.3000 -53.3000 -42.8000 -49.83000 -49.8000 -10.8000 &.7000
Friis-GainT (dB) -1.3000 -1.3000 12,7000 23.2000 16.2000 16.2000 5562000 72,7000
Friis-MF (dB) 23000 2.3000 3.5310 3.6572 3.6930 3.6930 37475 37275
Friis-0IP3 (dBm) G 37 259563 22.8096 123757 12,3747 51.3757 35.9973
Friis-SMR (dB) 32,6649 32,6649 31.4339 31.3076 31.2719 3.2719 31.2374 312373

10. The app displays the cascade values such as: output frequency of the receiver, output power, gain,
noise figure, OIP3, and SNR (Signal-to- Noise-Ratio).

7-5

7 RF Toolbox Examples

11. The RF Budget Analyzer app saves the model in a MAT-file format.
Plot Cascade Transducer Gain and Cascade Noise Figure

1. Plot the cascade transducer gain of the receiver using the function, rfplot

rfplot(superhet, 'GainT")
view(90,0)

Transducer Gain
Friis Analysis

Cascade

—
o~ Wk Wby =

=40 ' ' ' ' '
579 §.795 5.8 5.805 5.81 5.815

Input Frequency (GHz)

2. Plot the cascade noise figure of the receiver.

rfplot(superhet, 'NF")
view(90,0)

Superheterodyne Receiver Using RF Budget Analyzer App

Noise Figure
Friis Analysis

Cascade
1.

_‘I-

1.

1.

[=- TR I RN U e

NF (dB

579 5.795 5.8 5.805 5.81 5.815
Input Frequency (GHz)
You can also use the Plot button on the RFBudgetAnalyzer app to plot the different output values.
Export to MATLAB Script
1. You can also export the model to MATLAB script format using the Export button or:
h = exportScript(superhet);
The script opens automatically in a MATLAB Editor window.
h.closeNoPrompt
Verify Output Power and Transducer Gain Using RF Blockset Simulation
1. Use the Export button to export the receiver to RF Blockset or:
exportRFBlockset(superhet)

2. Run the RF Blockset model to calculate the Qutput power (dBm) and Transducer gain (dB) of
the receiver. Note that the results match the Pout (dBm) and the GainT (dB) values of the receiver
obtained using the RF Budget Analyzer app.

7-7

7 RF Toolbox Examples

G

@ NF

=]

Fa
\/

L

TRSwich

RF_Filter LNA

IF_Filter

6.69

Output powar (dBm)

M 7269

SIMULATION

Transducer gain (dB}

3. Look under the mask of the Demodulator block. This block consists of an ideal filter and a channel

select filter and an LO (local oscillator) for frequency up or down conversion.

CANL = = 4 @ P
New & Signal | 7| LN ") step ;; Step
- 8 Table k v - orward
e pare suLare ReviEw ResuLTs
5 | Demod
% ® |« @|mum.ea>@,pemua -
i«
B
=
=]
=
m]
IRFilter
CSFilter
/'_’
CoO—1 32 2 x| —2
In+ >, Out+
Ideal [\
ZisInf_lsolation Ideal
(@
L}
«

243%

auto(VariableStepDiscrete)

4. The stop time for the simulation is zero. To simulate time-varying results, you need to change the

stop time.

Export to RF Blockset Testbench

1. Use the Export button to export the receiver to RF Blockset measurement testbench or:

exportTestbench(superhet);

2. The RF Blockset testbench consists of two subsystems, RF Measurement Unit and Device

Under Test.

Superheterodyne Receiver Using RF Budget Analyzer App

MODELING FORMAT

‘ ;ﬁ S signal |7l o Data
[)a e - vt w e O - - _
® e [Faluntiieds > v
@
o RF Measurement Testbench
=]
Open the Block Parameters dialog of the RF Measurement Unit
B block for measurement-specific parameters and instructions.
Gain (dB)
Stimulus RF Measurement Unit
Response— RF Budget
Gain 72.7 dB
NF 3.728 dB
OIP3 36 dBm
IIP3 -36.7 dBm
Device
In Under Out
Test
(7]
[

247 FixedstepDiscrete

3. The Device Under Test subsystem block contains the superheterodyne receiver you exported
from the RF Budget Analyzer app. Double-click on the DUT subsystem block to look inside.

7 RF Toolbox Examples

#3 untitled1/DUT _Subsystem * - Simulink prerelease use

SIMULATION '3 MODELING

s 3 = n
New Bl - L A Signal = Siep S Dat Logi T
~ EPint v Browser Table Forward Inspect Analyz
FLE LBRARY PREPARE SMULATE REVIEW RESULTS z
DUT_Subsystem
o [@ o Q|mm>um_s‘.m=m -
ol
i}
=
=
=)
O
In Out
TRSwitch RF_Filter LNA Gain Demod IF_Filter IFAmp AGC
(7]
-]
»
Ready 193% FixedstepDiscrete

4. Double-click on the RF Measurement Unit subsystem block to see the system parameters. By
default, RF Blockset testbench verifies gain.

7-10

Superheterodyne Receiver Using RF Budget Analyzer App

Block Parameters: Testbench RF to RF *
RF Measurement Unit (mask) (link)

Measures RF properties of a system.

Simulate noise (both stimulus and DUT internal)

Measured quantity: Gain -

Parameters Instructions

Input power amplitude (dBm):

. .:II_,-"] \-I ..
—| |_
\ |

l"'t. .
- ,__/ '
-260.0 65.0

Input frequency (Hz): |5.BEQ | :

Output frequency (Hz): |4L'lL'leEr | :

Baseband bandwidth (Hz): |2EIeE~ | :

Cancel Help Apply

Verify Gain, Noise Figure and IP3 Using RF Blockset Testbench

You can verify the gain, noise figure, and IP3 measurements using the RF Blockset testbench.

1. By default, the model verifies the gain measurement of the device under test. Run the model to
check the gain value. The simulated gain value matches the cascade transducer gain value from the
app. The scope shows an output power of approximately 6.7 dB at 400 MHz that matches the output
power value in the RF Budget Analyzer app.

7-11

7 RF Toolbox Examples

RF Measurement Testbench

Open the Block Parameters dialog of the RF Measurement Unit
block for measurement-specific parameters and instructions.

RF Budget

Gain 72.7 dB
NF 3.728 dB
0IP3 36 dBm
IP3 -36.7 dBm

Gain (dB)
Stimulus RF Measurement Unit

Response

Device
In Under Out
Test

2. The RF Blockset testbench calculates the spot noise figure. The calculation assumes a frequency
independent system within a given bandwidth. To simulate a frequency independent system and
calculate the correct noise figure value, you need to reduce the broad bandwidth of 20 MHz to a

narrow bandwidth.

3. First, stop all simulations. Double-click on the RF Measurement Unit Block. This opens the RF
measurement unit parameters. In the Measured Quantity parameter drop down, change the
parameter to NF (noise figure). In the Parameters tab, change the Baseband bandwidth (Hz) to
2000 Hz. Click Apply. To learn more about how to manipulate noise figure verification, click the

Instructions tab.

|

RF Measurement Unit (mask) (link)

Measures RF properties of a system.

Simulate noise (both stimulus and DUT internal)
Measured quantity: |NF -
Parameters Instructions

Input power amplitude (dBm):

5 {
o 1=
)
e Y
-260.0 65.0

Input frequency (Hz): |5.Be-9 | 8

Output frequency (Hz): |40096 | B

Baseband bandwidth (Hz): |2000 | B

Clear noise history

OK Cancel Help Apply

7-12

Block Parameters: Testbench RF to RF X
RF Measurement Unit (mask) (link)
Measures RF properties of a system.

Simulate noise (both stimulus and DUT internal)
Measured quantity: | NF -
Parameters = Instructions

1. Correct calculation of the spot noise figure (NF) assumes a frequency-
independent system within the given bandwidth. Please reduce the Baseband
bandwidth until this condition is fulfilled. In common RF systems, the bandwidth
should be reduced below 1 KHz for NF testing.

2. For high input power, the measured NF may be affected by nonlinearities of
the Device Under Test (DUT) and differ from the NF calculated in the RF
budget app. In this case, use the knob to reduce the input power amplitude
value until the resulting NF value settles down. Bear in mind that for a too low
input signal power, the measured NF may become inaccurate or fail to
converge since the signal is close or below the noise floor of the system.

3. Other discrepancies between the measured NF and that calculated in the RF
budget app may originate from the more realistic account of the DUT
performance obtained using RF Blockset simulation. In this case, verify that the
DUT performance is evaluated correctly using RF budget calculations. For more
details, see the RF budget app decumentation.

Cancel Help Apply

Superheterodyne Receiver Using RF Budget Analyzer App

4. Run the model again to check the noise figure value. The testbench noise figure value matches the
cascade noise figure value from the RF Budget Analyzer app.

RF Measurement Testbench

Open the Block Parameters dialog of the RF Measurement Unit
block for measurement-specific parameters and instructions.

NF (dB) 3.561
Stimulus RF Measurement Unit
Responsef— RF Budget
Gain 72.7 dB
NF 3728 dB
oP3 36 dBm
P3 -36.7 dBm
Device
In Under Out]

Test

5. IP3 measurements rely on the creation and measurement of intermodulation tones that are usually
small in amplitude and may be below the DUT's noise floor. For accurate IP3 measurements, clear the
Simulate noise checkbox.

6. To verify OIP3 (output third-order intercept), stop all simulations. Open the RF Measurement
Unit dialog box. Clear the Simulate noise (both stimulus and DUT internal) check box. Change
the Measured Quantity parameter to IP3. Keep the IP Type as Output referred. To learn more
about how to manipulate OIP3 verification, click the Instructions tab. Click Apply.

Block Parameters: Testbench RF to RF X Block Parameters: Testbench RF to RF x
RF Measurement Unit (mask) (link) RF Measurement Unit (mask) (link)
Measures RF properties of a system. Measures RF properties of a system.
[simulate noise (both stimulus and DUT internal) [] simulate noise (beth stimulus and DUT internal)
Measured quantity: |IP3 = Measured quantity: IP3 ~
IP Type: Output referred - IP Type: Output referred -
Parameters Instructions Parameters Instructions
Input power amplitude (dBm): 1. To account for noise in the IP3 measurement, please check the 'Simulate noise'
checkbox.
\

/ 2. Correct calculation of the IP3 assumes a frequency-independent system in the
— |- frequencies surrounding the test tones. Please either reduce the frequency

/ separation between the test tones (by reducing the 'Ratio of test tone frequency to
. 4 baseband bandwidth'), or reduce the Baseband bandwidth itself until this condition is
T fulfilled. In common RF systems, the bandwidth should be reduced below 1 KHz for
-260.0 65.0 IP3 testing.

i 3. For high input power, the measured IP3 may be affected by high-order

nonlinearities of the Device Under Test (DUT) and differ from the OIP3 calculated in
Input frequency (Hz): |5 8e9 | : the RF budget app. In this case, use the knob to reduce the input power amplitude
value until the resulting OIP3 value settles down.

Output frequency (Hz): |4[}096 | H

4. Other discrepancies between the measured IP3 and that calculated in the RF

Baseband bandwidth (Hz): |2000 | g budget app may originate from the more realistic account of the DUT performance
obtained using RF Blockset simulation. In this case, verify that the DUT performance
Ratio of test tone frequency to baseband bandwidth: [1/8 g is evaluated correctly using RF budget calculations. For more details, see the RF
budget app documentation.
Cancel Help Apply Cancel Help Apply

7-13

7 RF Toolbox Examples

7. Run the model. The testbench OIP3 value matches the cascade OIP3 value of the app.

RF Measurement Testbench

Open the Block Parameters dialog of the RF Measurement Unit
block for measurement-specific parameters and instructions.

CERCEIED

OIP3 (dBm) 35.99

—1Stimulus RF Measurement Unit
Responser— RF Budget
Gain 72.7 dB
NF 3728 dB
oP3 36 dBm
P3 -36.7 dBm
Device
In Under Out
. Test
c

8. To verify IIP3 (input third-order intercept), stop all simulations. Open RF Measurement Unit
dialog box. Clear the Simulate noise (both stimulus and DUT internal) check box. Change the
Measured Quantity parameter in block parameters to IP3. Change the IP Type to Input referred.
To learn more about how to manipulate IIP3 verification, click the Instructions tab. Click Apply.

Block Parameters: Testbench RF to RF * Block Parameters: Testbench RF to RF *
RF Measurement Unit (mask) (link) RF Measurement Unit (mask) (link)

Measures RF properties of a system. Measures RF properties of a system.

[[] simulate noise (both stimulus and DUT internal) [[] simulate noise (both stimulus and DUT internal)

Measured quantity: IP3 - Measured quantity: IP3 -
IP Type: | Input referred - IP Type: | Input referred -
Parameters Instructions Parameters Instructions

Input power amplitude (dBm): 1. To account for noise in the IP3 measurement, please check the 'Simulate noise'
checkbox.
3

; 2. Correct calculation of the IP3 assumes a frequency-independent system in the

— |- frequencies surrounding the test tones. Please either reduce the frequency

\ / separation between the test tones (by reducing the 'Ratio of test tone frequency to
S 4 baseband bandwidth"), or reduce the Baseband bandwidth itself until this condition is
T fulfilled. In common RF systems, the bandwidth should be reduced below 1 KHz for
-260.0 65.0 IP3 testing.

i 3. For high input power, the measured IP3 may be affected by high-order

nonlinearities of the Device Under Test (DUT) and differ from the OIP3 calculated in
A the RF budget app. In this case, use the knob to reduce the input power amplitude

Input fi Hz): |5.8e9 i '

nput frequency (Hz) | | value until the resulting OIP3 value settles down.

Output frequency (Hz): |400e6 | H

4. Other discrepancies between the measured IP3 and that calculated in the RF

. : budget app may originate from the more realistic account of the DUT performance
Baseband bandwidth (Hz): |2000 i
seband bandwidth (Hz) | | obtained using RF Blockset simulation. In this case, verify that the DUT performance
Ratio of test tone frequency to baseband bandwidth: _ : is evaluated correctly using RF budget calculations. For more details, see the RF
budget app documentation.
Cancel Help Apply Cancel Help Apply

9. Run the model again to check the IIP3 value.

7-14

Superheterodyne Receiver Using RF Budget Analyzer App

RF Measurement Testbench

Open the Block Parameters dialog of the RF Measurement Unit
block for measurement-specific parameters and instructions.

1IP3 (dBm) -36.71
Stimulus RF Measurement Unit
Response) RF Budget
Gain 727 dB
NF 3.728 dB
OIP3 36 dBm
P3 -36.7 dBm
Device
In Under Out
Test
References

[1] Hongbao Zhou, Bin Luo. " Design and budget analysis of RF receiver of 5.8GHz ETC reader"
Published at Communication Technology (ICCT), 2010 12th IEEE International Conference, Nanjing,
China, November 2010.

[2] Bin Luo, Peng Li. "Budget Analysis of RF Transceiver Used in 5.8GHz RFID Reader Based on the

ETC-DSRC National Specifications of China" Published at Wireless Communications, Networking and
Mobile Computing, WiCom '09. 5th International Conference, Beijing, China, September 2009.

7-15

7 RF Toolbox Examples

Visualizing RF Budget Analysis Over Bandwidth

This example shows how to programmatically perform an RF budget analysis of an RF receiver
system and visualize computed budget results across the bandwidth of the input signal.

First, use amplifier, modulator, rfelement, and nport objects to specify the 2-port RF elements
in a design. Then compute RF budget results by cascading the elements together into an RF system
with rfbudget.

The rfbudget object enables design exploration and visualization at the MATLAB command-line or
graphically in the RF Budget Analyzer app. It also enables automatic RF Blockset model and
measurement testbench generation.

Introduction

RF system designers typically begin a design process with budget specifications for the gain, noise
figure (NF), and nonlinearity (IP3) of the entire system.

MATLAB functionality supporting RF budget analysis makes it easy to visualize gain, NF and IP3
results at multiple frequencies throughout the bandwidth of the signal. You can:

* Programmatically build an rfbudget object out of 2-port RF elements.

* Use the command-line display of the rfbudget object to view single-frequency budget results.

* Vectorize the input frequency of the rfbudget object and use MATLAB plot to visualize RF budget
results across the bandwidth of the input signal.

In addition, with an rfbudget object you can:
» Use export methods to generate MATLAB scripts, RF Blockset models, or measurement

testbenches in Simulink.
* Use show to copy an rfbudget object into the RF Budget Analyzer app.

Building the Elements of an RF Receiver

A basic RF receiver consists of an RF filter, an RF amplifier; a demodulator, an IF filter, and an IF
amplifier.

First build and parameterize each of the 2-port RF elements. Then use rfbudget to cascade the
elements with input frequency 2.1 GHz, input power -30 dBm, and input bandwidth 45 MHz.

fl = nport('RFBudget RF.s2p', 'RFBandpassFilter');

al = amplifier('Name', 'RFAmplifier’,
'Gain',11.53,
'NF',1.53,
'0IP3',35);

d = modulator('Name', 'Demodulator’,
'Gain', -6,
'NF',4, ..
'0IP3',50, ...
'LO',2.03e9,
'ConverterType', 'Down');

f2 = nport('RFBudget IF.s2p', 'IFBandpassFilter');

7-16

Visualizing RF Budget Analysis Over Bandwidth

a2 = amplifier('Name', 'IFAmplifier',
'Gain', 30,
'‘NF',8, ...
'0IP3',37);

b = rfbudget('Elements',[fl al d f2 a2],
'InputFrequency',2.1e9,
'AvailableInputPower',-30,
'SignalBandwidth',45e6);

Visualize RF Budget Results in MATLAB

Scalar frequency results can be viewed simply by using MATLAB disp to see the results at the
command-line.

Each column of the budget shows the results of cascading only the elements of the previous columns.
The final column shows the RF budget results of the entire cascade.

disp(b)
rfbudget with properties:

Elements: [1x5 rf.internal.rfbudget.Element]
InputFrequency: 2.1 GHz
AvailableInputPower: -30 dBm
SignalBandwidth: 45 MHz
Solver: Friis
AutoUpdate: true

Analysis Results

OutputFrequency: (GHz) [2.1 2.1 0.07 0.07 0.07]
OutputPower: (dBm) [-31.53 -20 -26 -27.15 2.847]
TransducerGain: (dB) [-1.534 9.996 3.996 2.847 32.85]
NF: (dB) [1.533 3.064 3.377 3.611 7.036]

IIP2: (dBm) []

0IP2: (dBm) T[]
IIP3: (dBm) [Inf 25 24.97 24.97 4.116]
0IP3: (dBm) [Inf 35 28.97 27.82 36.96]
SNR: (dB) [65.91 64.38 64.07 63.83 60.41]

Plot RF Budget Results Versus Input Frequency

Use the budget's rfplot function to produce report-ready plots of cumulative RF budget results versus
a range of cascade input frequencies. Cumulative (i.e. terminated sub-cascade) results are
automatically computed to show the variation of the RF budget result through the entire design. Use
the data cursor of the figure window to interactively explore values at different frequencies at
different stages.

rfplot(b, 'Pout")

7-17

7 RF Toolbox Examples

Output Power
Friis Analysis

Cascade

1.1

1.2

29 1.3
D 1 — 15

Pout {dBm)
b
o

Cascade

Input Frequency (GHz)

rfplot(b, 'GainT")

7-18

Visualizing RF Budget Analysis Over Bandwidth

Transducer Gain
Friis Analysis

Cascade
1.1
1.2
40 . 1.3
% 0
=
£ 20
]
-40

Cascade

Input Frequency (GHz)

Plot RF Budget Network Parameter Results Versus Input Frequency

Use the RF budget smithplot/polar function to produce plots of cumulative RF budget sparameter
results versus a range of cascade input frequencies. Use smithplot function to view reflection
coefficients and polar to view reflection and transmission coefficients.

smithplot(b,1,1)

7-19

7 RF Toolbox Examples

Cascade

polar(b,2,1)

7-20

511
+J"|

Visualizing RF Budget Analysis Over Bandwidth

165

180

195

210

240 300
233 oy 2085

Easily Export to RF Blockset and Simulink
The rfbudget object has other useful MATLAB methods:

* exportScript - generate a MATLAB script that builds the current design
* exportRFBlockset - generate an RF Blockset model for simulation
* exportTestbench - generate a Simulink measurement testbench

Visualize RF Budget Results in the App

Use the show command to copy a single-frequency rfbudget object into the RF Budget Analyzer
app. The Plot, Smith, and Polar button in the app, with its pull-down options, calls rfplot, smithplot,
and polar respectively.

In the app, the Export button copies the current design to an rfbudget object in the MATLAB
workspace. All of the other export methods of the RF budget object are available through the
pulldown options of the Export button.

show(b)

7-21

7 RF Toolbox Examples

Stage
GainT [B)
MF (dB)
QIP3 [dEm)

7-22

511512
Sn S
RFBandp... RFAmplifier Demodula. .. IFBandpa. .. IF Amplifier
1 2 3 4 5
-1.534 1153 -6 41148 30
1533 153 4 1147 3
Inf 35 50 Inf 37
S-parameters Element
Mame [RFBandpassFitter
Touchstone File RFEudget_RF =2p Brovwze

Apply

Visualizing RF Budget Analysis Over Bandwidth

Select Resultts ¥ Compare isw

Cascade 1.1 1.2 1.3 1.4 1.4
Fout (GHz) 21000 21000 0.0700 0.0700 0.0700
Friis-Pout (dBm) -31 5344 -20.0044 -26.0044 -27 1533 2 8467
Friis-GainT (dBE) -1.5344 9.9955 3.9956 2.8467 328467
Friis-MF [dB) 16332 30636 33766 36106 7 0356
Friigs-0IP3 (dBm) [nf 35 289656 27.8168 36.9642
Friis-SMR (dB) F5.9098 G4 3795 64 .0F6E4 F3.8325 B0 4075

Automatically Create Reports From MATLAB Files

If you have written a 'myfile.m' script that builds your design and visualizes it with rfplot commands,
try the publish('myfile.m') function at the command line (or click the Publish button in the MATLAB
editor). This automatically generates all figures and produces a report for your colleagues, saved as
an html file.

To save your design, first undock using the commands shown below and then use the Figure Toolbar
to pulldown the File Menu and save using File -> Save As and select the Save as type to png or pdf.

To redock the figure window into the app you can click the Dock affordance on the upper right corner
of the figure window.

h = findall(0, 'type', 'figure', 'name', 'untitled');
set(h, 'WindowStyle', 'normal")

set(h, '"MenuBar', 'figure")

set(h, 'ToolBar', 'auto"')

7-23

7 RF Toolbox Examples

Bandpass Filter Response

This example shows how to compute the time-domain response of a simple bandpass filter:

1

8

Use the classic image parameter design to assign inductance and capacitance values to the
bandpass filter.

Use circuit, capacitor, and inductor objects with the add function to programmatically
construct a Butterworth circuit.

Use setports to define the circuit as a 2-port network.

Use sparameters to extract the S-parameters of the 2-port network over a wide frequency
range.

Use s2tf to compute the voltage transfer function from the input to the output.

Use rational to generate rational fits that capture the ideal RC circuit to a very high degree of
accuracy.

Use randn to create noise in order to create a noisy input voltage waveform.
Use timeresp to compute the transient response to a noisy input voltage waveform.

Design Bandpass Filter by Image Parameters

The image parameter design method is a framework for analytically computing the values of the
series and parallel components in passive filters. For more information on this method, see "Complete
Wireless Design" by Cotter W. Sayre, McGraw-Hill 2008 p. 331.

Ls1 Csl Cs2 Ls2

e - ——————e)

7-24

Cp1+ Lpl ; ELpZ + Cp2

Fig

O

ure 1: A Butterworth bandpass filter built out of two half-sections.

The following MATLAB code generates component values for a bandpass filter with a lower 3 dB
cutoff frequency of 2.4 GHz and an upper 3 dB cutoff frequency of 2.5 GHz.

Ro
f1C
f2C

Ls
Cs

Lp
Cp

= 50;

= 2400e6;

= 2500e6;

= (Ro / (pi*(f2C - f1C)))/2; % Lsl and Ls2
= 2¥(f2C - f1C)/(4*pi*Ro*f2C*f1C); % Csl and Cs2
= 2*¥Ro*(f2C - f1C)/(4*pi*f2C*flC); % Lpl and Lp2
= (1/(pi*Ro*(f2C - f1C)))/2; % Cpl and Cp2

Bandpass Filter Response

Programmatically Construct Circuit

Before building the circuit using inductor and capacitor objects, nodes in the circuit are
numbered. This is shown in figure 1.

Cpl L Lpl ;

Figure 2: Node numbers added to the Butterworth bandpass filter.

Create a circuit object and populate it with inductor and capacitor objects using the add

function.

ckt = circuit('butterworthBPF');

add(ckt, [3 21,
add(ckt, [4 3],
add (ckt, [5 4],
add(ckt,[6 5],

add(ckt,[4 1],
add(ckt,[4 1],
add(ckt,[4 1],
add(ckt,[4 1],

Extract S-Parameters From 2-Port Network

inductor(Ls
capacitor(C
capacitor(C
inductor(Ls

o® o° o o°

capacitor(Cp)

inductor(Lp));
));
p)

inductor(Lp
capacitor(C

o® o° o o°

);

Lsl
Csl
Cs2
Ls2

Cpl
Lpl
Lp2
Cp2

To extract S-parameters from the circuit object, first use the setports function to define the circuit
as a 2-port network. Once the circuit has ports, use sparameters to extract the S-parameters at the
frequencies of interest.

freq = linspace(2e9,3e9,101);

setports(ckt,[2 1],[6 11)
S = sparameters(ckt,freq);

Fit Transfer Function of Circuit to Rational Function

Use the s2tf function to generate a transfer function from the S-parameter object. Then use
rational to fit the transfer function data to a rational function.

tfS
fit

s2tf(S);

rational(freq, tfS);

7-25

7 RF Toolbox Examples

Verify Rational Fit Approximation

Use the freqresp function to verify that the rational fit approximation has reasonable behavior
outside both sides of the fitted frequency range.

widerFreqs = linspace(2e8,5e9,1001);
resp = freqresp(fit,widerFreqs);

figure

semilogy(freq,abs(tfS),widerFreqgs,abs(resp),'--', 'LineWidth',2)
xlabel('Frequency (Hz)');

ylabel('Magnitude');

legend('data’', 'fit');

title('The rational fit behaves well outside the fitted frequency range.');

The rational fit behaves well outside the fitted frequency range.

1D T T T T T T T T
data

1072 3

[4k] by
,
£ , .
= 4 L F i i
S 10 , ~ .
5] ’ =
= , e
-
-
F
>
1078} ’ 3
4
I
¥
r
108 . \ \ \ \ \ \ . \

o o5 1 15 2 25 3 35 4 45 5
Frequency (Hz) x10°

Construct Input Signal to Test Bandpass Filter

This bandpass filter should be able to recover a sinusoidal signal at 2.45 GHz that is made noisy by
the inclusion of zero-mean random noise and a blocker at 2.35 GHz. The following MATLAB code
constructs such a signal from 8192 samples.

fCenter = 2.45e9;

fBlocker = 2.35€9;

period = 1/fCenter;

sampleTime = period/16;

signallLen = 8192;

t = (0:signallLen-1) '*sampleTime; % 256 periods

7-26

Bandpass Filter Response

input = sin(2*pi*fCenter*t); % Clean input signal
rng('default")

noise = randn(size(t)) + sin(2*pi*fBlocker*t);
noisyInput = input + noise; % Noisy input signal

Compute Transient Response to Input Signal

The timeresp function computes the analytic solution to the state-space equations defined by the
rational fit and the input signal.

output = timeresp(fit,noisyInput,sampleTime);
View Input Signal and Filter Response in Time Domain

Plot the input signal, noisy input signal, and the band pass filter output in a figure window.

xmax = t(end)/8;

figure

subplot(3,1,1)
plot(t,input)

axis([0 xmax -1.5 1.5])
title('Input')

subplot(3,1,2)

plot(t,noisyInput)

axis([0 xmax floor(min(noisyInput)) ceil(max(noisyInput))l]);
title('Noisy Input');

ylabel('Amplitude (volts)');

subplot(3,1,3)
plot(t,output)

axis([0 xmax -1.5 1.5]);
title('Filter Output');
xlabel('Time (sec)');

7-27

7 RF Toolbox Examples

Input
1
L]
-
1 1 1 1 1
0 0.5 1 1.5 2 25
%107
= Moisy Input
= 5 T T T T T
o
=
© 0
=
=
E -5 1 I I I I
< g 0.5 1 15 2 25
%107
Filter Qutput
1 b
li]
b
0 0.5 1 1.5 2 25
Time (sec) %107

View Input Signal and Filter Response in Frequency Domain

Overlaying the noisy input and the filter response in the frequency domain explains why the filtering
operation is successful. Both the blocker signal at 2.35 GHz and much of the noise is significantly
attenuated.

NFFT = 2”nextpow2(signallLen); % Next power of 2 from length of y
Y = fft(noisyInput,NFFT)/signallen;
samplingFreq = 1/sampleTime;

f = samplingFreq/2*linspace(0,1,NFFT/2+1)";
0 = fft(output,NFFT)/signallLen;
figure

subplot(2,1,1)

plot(freq,abs(tfS),'b', 'LineWidth"',2)
axis([freq(l) freq(end) 0 1.1]);
legend('filter transfer function');
title('Transfer function of Bandpass filter');
ylabel('Magnitude');

subplot(2,1,2)
plot(f,2*abs(Y(1:NFFT/2+1)),'qg"',f,2*abs(0(1:NFFT/2+1)), " 'r", 'LineWidth"',2)
axis([freq(l) freq(end) 0 1.1]);

legend('input+noise’, 'output');

title('Filter characteristic and noisy input spectrum.');
xlabel('Frequency (Hz)');

ylabel('Magnitude (Volts)');

7-28

Bandpass Filter Response

Transfer function of Bandpass filter

tr | filter transfer function
a
=
=
=
= 0.5
=
0 : . 1 1 : .
2 21 2.2 2.3 2.4 2.5 2.6 27 2.8 29 3
<10°
Filter characteristic and neoisy input spectrum.

—_ input+noise |
25}
% output
=
&
=)
=
=
®
=

2 2.1 22 23 24 25 2.6 27 2.8 29 3
Frequency (Hz) <10°

For an example of how to compute and display this bandpass filter response using RFCKT objects, see
“Bandpass Filter Response Using RFCKT Objects” on page 7-35.

7-29

7 RF Toolbox Examples

MOS Interconnect and Crosstalk

This example shows how to build and simulate an RC tree circuit using the RF Toolbox.

In "Asymptotic Waveform Evaluation for Timing Analysis" (IEEE Transactions on Computer-Aided
Design, Vol., 9, No. 4, April 1990), Pillage and Rohrer present and simulate an RC tree circuit that
models signal integrity and crosstalk in low- to mid-frequency MOS circuit interconnect. This example
confirms their simulations using RF Toolbox software.

Their circuit, reproduced in the following figure, consists of 11 resistors and 12 capacitors. In the
paper, Pillage and Rohrer:

* Apply a ramp voltage input

* Compute transient responses

» Plot the output voltages across two different capacitors, C7 and C12.

R9 R10 R8
48 24 24
AN l W'\N'-j —a4AAN - B—
i e 41 co 4 s
.007p 2p T .2p
R1 R2 R3 _Ti_ R4 R5 R6 _Ti_ R7 C11
10 72 34 96 72 10 120 p
Vinput -L aa -L c2 J- c3 J-. ca J.. cs _L o] _L c7 R11 _‘1_ c12
P '{ 114p '{ 1.238p | .Dzlp-{ .028p '{ 007p | 1.048p | .47p 1000 1p
c [
-

=

Figure 1: An RC tree model of MOS interconnect with crosstalk.

With RF Toolbox software, you can programmatically construct this circuit in MATLAB and perform
signal integrity simulations.

This example shows:
1 Howtouse circuit, resistor, and capacitor with the add function to programmatically
construct the circuit.

2 How to use clone, setports, and sparameters to calculate S-parameters for each desired
output over a wide frequency range.

3 How touse s2tf with Zsource = 0 and Zload = Inf to compute the voltage transfer function
from input to each desired output.

7-30

MOS Interconnect and Crosstalk

4 How touse rationalfit to produce rational-function approximations that capture the ideal RC-
circuit behavior to a very high degree of accuracy.

5 How to use timeresp to compute the transient response to the input voltage waveform.

Insert Node Numbers into the Circuit Diagram

Before building the circuit using resistor and capacitor objects, we must number the nodes of

the circuit s

hown in figure 1.

R9 R10
48 24 @ RE
—a-AMA - AN B—
°] : (12) 2
1 c 1 cw r]
Q007p T .2p i cs
® L™ T
1 1 ©
R1 R2 R3] R5 RE __ R7 C11
10 72 34 96 72 10 120 dp
®ww~ ww»—c?—«w@ij)m-—-—-w@ww ~||—a-—j@)‘l
* #HM F & - @ -t e X e 1 oy 6 ri1 { c12
'{ .114p '{ 1.238p | .021p T .028p | .007p | 1.048p | .47p 1000 1p

q”_

r;”

Figure 2: The circuit drawn with node numbers

Programmatically Construct the Circuit

Create a circuit and use the add function to populate the circuit with named resistor and

capacitor

ckt = circ
add(ckt, [2
add(ckt, [2
add(ckt, [3
add(ckt, [3
add (ckt, [4
add (ckt, [4
add(ckt, [5
add(ckt, [5
add(ckt, [6
add(ckt, [6
add(ckt, [7
add(ckt, [7
add(ckt, [8
add(ckt, [8

objects.

uit('crosstalk');

1], resistor(10, 'R1"))

0],capacitor(0.114e-12,'C1"))

2], resistor(72,'R2'))

0],capacitor(1.238e-12,'C2"))

3], resistor(34,'R3'))

0],capacitor(0.021le-12,'C3"))

4],resistor(96, 'R4'))

0],capacitor(0.028e-12,'C4"))

5], resistor(72,'R5"'))

0],capacitor(0.007e-12,'C5"))

6], resistor(10, 'R6"'))

0],capacitor(1.048e-12,'C6"))

71, resistor (120, 'R7"'))

0],capacitor(0.47e-12,'C7"))

7-31

7 RF Toolbox Examples

7-32

add(ckt,[12 8], resistor(24,'R8"))
add(ckt,[12 0],capacitor(0.2e-12,'C8"))

add(ckt,[10 2],resistor(48,'R9"))
add(ckt,[10 0], capacitor(0.007e-12,'C9"))
add(ckt,[11 10],resistor(24,'R10'))
add(ckt,[11 0], capacitor(0.2e-12,'C10"))

add(ckt,[9 8],capacitor(0.1le-12,'C11"))
add(ckt,[9 0], resistor (1000, 'R11"'))
add(ckt,[9 0],capacitor(le-12,'C12"'))

Simulation Setup

The input signal used by Pillage and Rohrer is a voltage ramp from 0 to 5 volts with a rise time of one
nanosecond and a duration of ten nanoseconds. The following MATLAB code models this signal with
1000 timepoints with a sampleTime of 0.01 nanoseconds.

The following MATLAB code also uses the Logspace function to generate a vector of 101
logarithmically spaced analysis frequencies between 1 Hz and 100 GHz. Specifying a wide set of
frequency points improves simulation accuracy.

sampleTime = le-11;
t = (0:1000) '*sampleTime;
input = [(0:100)'*(5/100); (101:1000)'*0+5];

freq = logspace(0,11,101)"';
Calculate S-parameters For Each 2-Port Network

To calculate the response across both the C7 and C12 capacitors, two separate S-parameter
calculations must be made: first, assuming the C7 capacitor represents the output port, and second,
assuming the C12 capacitor represents the output port. To calculate the S-parameters for each setup:

1 Copy the original circuit ckt using the clone function.

2 Define the input and output ports of the network using the setports function.
3 Calculate the S-parameters using the sparameters function.

cktC7 = clone(ckt);

setports(cktC7,[1 0],[8 0])
S C7 = sparameters(cktC7,freq);

cktC1l2 = clone(ckt);
setports(cktC1l2,[1 0],[9 0])
S C12 = sparameters(cktC12,freq);

Simulate Each 2-Port Network
To simulate each network:

1 The s2tf function, with option = 2, computes the gain from the source voltage to the output
voltage. It allows arbitrary source and load impedances, in this case Zsource = 0 and Zload =
Inf. The resulting transfer functions tfC7 and tfC12 are frequency-dependent data vectors that
can be fit with rational-function approximation.

2 The rationalfit function generates high-accuracy rational-function approximations. The
resulting approximations match the networks to machine accuracy.

MOS Interconnect and Crosstalk

3 The timeresp function computes the analytic solution to the state-space equations defined by a
rational-function approximation. This methodology is fast enough to enable one to push a million
bits through a channel.

tfC7 = s2tf(S _C7,0,Inf,2);
fitC7 = rationalfit(freq,tfC7);
outputC7 = timeresp(fitC7,input,sampleTime);

tfCl2 = s2tf(S_C12,0,Inf,2);
fitCl2 = rationalfit(freq,tfCl2);
outputCl2 = timeresp(fitCl2, input,sampleTime);

Plot Transient Responses

The outputs match Figures 23 and 24 of the Pillage and Rohrer paper.

figure

plot(t,input,t,outputC7, 'LineWidth"',?2)

axis ([0 2.5e-9 0 5.5])

title('Ramp Response of Low- to Mid-frequency MOS Circuit Interconnect with Crosstalk')
xlabel('Time (sec)")

ylabel('Voltage (volts)"')

legend('Vinput','V(C7)"', 'Location', 'NorthWest")

Ramp Response of Low- to Mid-frequency MOS Circuit Interconnect with Crosst:
5. 5 T T T T

Vinput
ar V(CT)

3.5 7T

Voltage (volts)

1571

0 . . . '
0 0.5 1 1.5 2 2.5

Time (sec) w1072

figure
plot(t,input,t,outputCl2, 'LineWidth',2)
axis ([0 5e-9 0 .5])

7-33

7 RF Toolbox Examples

7-34

title('Crosstalk in Low- to Mid-frequency MOS Circuit Interconnect with Ramp Input')
xlabel('Time (sec)')

ylabel('Voltage (volts)"')

legend('Vinput', 'V(C12)"', 'Location', 'NorthEast")

Crosstalk in Low- to Mid-frequency MOS Circuit Interconnect with Ramp Input

0.5

Vinput
045 VIiC12) | T
0.4 T
0.35[T

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec) w1072

Verify Rational Fit Outside Fit Range

Though not shown in this example, you can also use the freqresp function to check the behavior of
rationalfit well outside the specified frequency range. The fit outside the specified range can
sometimes cause surprising behavior, especially if frequency data near 0 Hz (DC) is not provided.

To perform this check for the rational-function approximation in this example, uncomment and run
the following MATLAB code.

widerFreqs = logspace(0,12,1001);

respC7 = freqresp(fitC7,widerFreqs);

figure
loglog(freq,abs(tfC7),'+',widerFreqs,abs(respC7))
respCl2 = freqresp(fitCl2,widerFreqs);

figure

loglog(freq,abs(tfC12), '+"',widerFreqs,abs(respCl2))

0° o° o° o° o o° o°

For an example of how to build and simulate this RC tree circuit using RFCKT objects, go to: “MOS
Interconnect and Crosstalk Using RFCKT Objects” on page 7-41.

Bandpass Filter Response Using RFCKT Objects

Bandpass Filter Response Using RFCKT Objects

This example shows how to compute the time-domain response of a simple bandpass filter:

Choose inductance and capacitance values using the classic image parameter design method.

Use rfckt.seriesrlc, rfckt.shuntrlc, and rfckt.cascade to programmatically
construct a Butterworth circuit as a 2-port network.

3 Use analyze to extract the S-parameters of the 2-port network over a wide frequency range.
Use s2tf to compute the voltage transfer function from the input to the output.

5 Use rationalfit to generate rational fits that capture the ideal RC circuit to a very high
degree of accuracy.

Create a noisy input voltage waveform.
Use timeresp to compute the transient response to a noisy input voltage waveform.

Design a Bandpass Filter by Image Parameters

The image parameter design method is a framework for analytically computing the values of the
series and parallel components in passive filters. For more information on this method, see "Complete
Wireless Design" by Cotter W. Sayre, McGraw-Hill 2008 p. 331.

E'.'.l
3

Ls Ls2

(e

JT— Cp ? Lp Lp2 E

as |l
1
[
o
2

Figure 1: A Butterworth bandpass filter built out of two half-sections.

The following MATLAB code generates component values for a bandpass filter with a lower 3-dB
cutoff frequency of 2.4 GHz and an upper 3-dB cutoff frequency of 2.5 GHz.

Ro = 50;

f1C = 2400e6;

f2C = 2500e6;

Ls (Ro / (pi*(f2C - f1C)))/2;

Cs = 2*(f2C - f1C)/(4*pi*Ro*f2C*f1C);
Lp = 2*Ro*(f2C - f1C)/(4*pi*f2C*f1C);
Cp = (1/(pi*Ro*(f2C - f1C)))/2;

7-35

7 RF Toolbox Examples

7-36

Programmatically Construct the Circuit as a 2-Port Network

The L and C building blocks are formed by selecting appropriate values with the rfckt.shuntrlc
function shown in Figure 2 or the rfckt.seriesrlc function shown in Figure 3. The building blocks
are then connected together with rfckt.cascade as shown in Figure 4.

{1)» o)

e
o
A
r
.._,_I I_._.
o]

(2 ")

Figure 2: The 2-port network created by the rfckt.shuntrlc function.

-

L

O O
@ %0

Figure 3: The 2-port network created by the rfckt.seriesrlc function.

{}.—- 3 al 3:.—.{:}
@-—nz 4 alz 4n—.@

Figure 4: Connecting 2-port networks with the rfckt.cascade function.

Segl = rfckt.seriesrlc('L',Ls,'C"',Cs);
Seg2 = rfckt.shuntrlc('L',Lp,'C',Cp);
Seg3 = rfckt.shuntrlc('L',Lp,'C',Cp);
Seg4 = rfckt.seriesrlc('L',Ls,'C',Cs);

cktBPF = rfckt.cascade('Ckts',{Segl,Seg2,Seg3,Seg4});
Extract S-Parameters From the 2-Port Network

The analyze method extracts the S-parameters from a circuit over a specified vector of frequencies.
This example provides a set of frequencies that spans the passband of the filter and analyzes with the
default 50-Ohm reference, source impedance, and load impedances. Next, the s2tf function

Bandpass Filter Response Using RFCKT Objects

computes the voltage transfer function across the S-parameter model of the circuit. Finally, we
generate a high-accuracy rational approximation using the rationalfit function. The resulting
approximation matches the network to machine accuracy.

freq = linspace(2e9,3e9,101);
analyze(cktBPF,freq);

sparams = cktBPF.AnalyzedResult.S Parameters;
tf = s2tf(sparams);

fit = rationalfit(freq,tf);

Verify that the Rational Fit Tends to Zero

Use the freqresp method to verify that the rational fit approximation has reasonable behavior
outside both sides of the fitted frequency range.

widerFreqs = linspace(2e8,5e9,1001);
resp = freqresp(fit,widerFreqs);

figure

semilogy(freq,abs(tf),widerFreqs,abs(resp),'--"', 'LineWidth',2)
xlabel('Frequency (Hz)"')

ylabel('Magnitude")

legend('data’', 'fit")

title('The rational fit behaves well outside the fitted frequency range.')

The rational fit behaves well outside the fitted frequency range.

10° : : : : : : . .
data

10 F :

18] L
#
E , e
‘= 4L # bl i
£ 10 , ~
@ - o
= ” el
o
P
”
’
108 ’ 3
F
I
F
r
10-8

0 0.5 1 1.5 2 25 3 is5 4 4.5 5
Frequency (Hz) <109

7-37

7 RF Toolbox Examples

7-38

Construct an Input Signal to Test the Band Pass Filter

This bandpass filter should be able to recover a sinusoidal signal at 2.45 GHz that is made noisy by
the inclusion of zero-mean random noise and a blocker at 2.35 GHz. The following MATLAB code
constructs such a signal from 4096 samples.

fCenter = 2.45e9;

fBlocker = 2.35e9;

period = 1/fCenter;

sampleTime = period/16;

signallLen = 8192;

t = (0:signallLen-1) '*sampleTime; % 256 periods

input = sin(2*pi*fCenter*t); % Clean input signal
rng(‘'default')

noise = randn(size(t)) + sin(2*pi*fBlocker*t);
noisyInput = input + noise; % Noisy input signal

Compute the Transient Response to the Input Signal

The timeresp function computes the analytic solution to the state-space equations defined by the
rational fit and the input signal.

output = timeresp(fit,noisyInput,sampleTime);
View Input Signal and Filter Response in the Time Domain

Plot the input signal, noisy input signal, and the band pass filter output in a figure window.

xmax = t(end)/8;

figure

subplot(3,1,1)
plot(t,input)

axis([0 xmax -1.5 1.5])
title('Input')

subplot(3,1,2)

plot(t,noisyInput)

axis([0 xmax floor(min(noisyInput)) ceil(max(noisyInput))])
title('Noisy Input')

ylabel('Amplitude (volts)"')

subplot(3,1,3)
plot(t,output)

axis([0 xmax -1.5 1.5])
title('Filter Output')
xlabel('Time (sec)')

Bandpass Filter Response Using RFCKT Objects

Input
1
L]
-
1 1 1 1 1
0 0.5 1 1.5 2 25
%107
- Moisy Input
= 5 T T T T T
=]
=
© 0
=
=
E .5 1 I I I I
< g 0.5 1 15 2 25
%107
Filter Qutput
1 b
li]
AF
0 0.5 1 1.5 2 25
Time (sec) w1078

View Input Signal and Filter Response in the Frequency Domain

Overlaying the noisy input and the filter response in the frequency domain explains why the filtering
operation is successful. Both the blocker signal at 2.35 GHz and much of the noise is significantly
attenuated.

NFFT = 2”nextpow2(signallLen); % Next power of 2 from length of y
Y = fft(noisyInput,NFFT)/signallLen;
samplingFreq = 1/sampleTime;

f = samplingFreq/2*linspace(0,1,NFFT/2+1)";
0 = fft(output,NFFT)/signallLen;
figure

subplot(2,1,1)
plot(freq,abs(tf),'b', 'LineWidth',2)
axis([freq(l) freq(end) 0 1.11)
legend('filter transfer function')
ylabel('Magnitude")

subplot(2,1,2)
plot(f,2*abs(Y(1:NFFT/2+1)),'qg"',f,2*abs(0(1:NFFT/2+1)), " 'r", 'LineWidth"',2)
axis([freq(l) freq(end) 0 1.171)

legend('input+noise', 'output')

title('Filter characteristic and noisy input spectrum.')
xlabel('Frequency (Hz)")

ylabel('Magnitude (Volts)"')

7-39

7 RF Toolbox Examples

tr filter transfer function
a
=]
=
=
= 0.5
=
[z L 1 1 z L
2 2.1 2.2 2.3 24 2.5 2.6 27 2.8 29 a
x10°
Filter characteristic and neoisy input spectrum.

—_ input+noise |
25
% output
=
it
=)
=
=
=y
=

2 2.1 22 23 24 25 2.6 27 2.8 29 3
Frequency (Hz) x10°

7-40

MOS Interconnect and Crosstalk Using RFCKT Objects

MOS Interconnect and Crosstalk Using RFCKT Objects

This example shows how to build and simulate an RC tree circuit using the RF Toolbox.

In "Asymptotic Waveform Evaluation for Timing Analysis" (IEEE Transactions on Computer-Aided
Design, Vol., 9, No. 4, April 1990), Pillage and Rohrer present and simulate an RC tree circuit that
models signal integrity and crosstalk in low- to mid-frequency MOS circuit interconnect. This example
confirms their simulations using RF Toolbox software.

Their circuit, reproduced in the following figure, consists of 11 resistors and 12 capacitors. In the
paper, Pillage and Rohrer:

* Apply a ramp voltage input

* Compute transient responses

* Plot the output voltages across two different capacitors, C7 and C12.

R9 R10 RS
48 24 24
AP l ‘V\.'Wj —a4AAAN B—
1 o 4 co 4 cs
007p | .2p T 2p
R1 R2 R3 _?L R4 RS R6 _%_ R7 c11
10 72 34 9 72 10 120 A1p
vinprt e 2 & 2@ L o 6L a 1 o 6 1 o é rR11 1 c12
¥ '{ 114p '{ 1.238p | ozm'{ 028p '{ .007p 1.048p 47p 1000 1p
L [
d

Figure 1: An RC tree model of MOS interconnect with crosstalk.

—

With RF Toolbox software, you can programmatically construct this circuit in MATLAB and perform
signal integrity simulations.

This example shows:

1

How to use rfckt.seriesrlc, rfckt.shuntrlc, rfckt.series, and rfckt.cascade to
programmatically construct the circuit as two different networks, depending on the desired
output.

How to use analyze to extract the S-parameters for each 2-port network over a wide frequency
range.

How to use s2tf with Zsource

from input to each desired output.

0 and Zload = Inf to compute the voltage transfer function

7-41

7 RF Toolbox Examples

4 How touse rationalfit to produce rational-function approximations that capture the ideal RC-
circuit behavior to a very high degree of accuracy.

5 How to use timeresp to compute the transient response to the input voltage waveform.
Redraw the Circuit as Distinct 2-Port Networks

To duplicate both output plots, RF Toolbox software calculates the output voltage across C7 and C12.
To that end, the circuit must be expressed as two distinct 2-port networks, each with the appropriate
capacitor at the output. Figure 2 shows the 2-port configuration for computing the voltage across C7.
Figure 3 shows the configuration for C12. Both 2-port networks retain the original circuit topology,

and share much of the same structure.

R1 R2 R3 R4 RS R6 R7
10 72 34 96 72 10 120 -
(Le - I AANA~ e e e i A ~AAAA~ . »3)

:: R9 '_:_ Cl1
- 48 < R8 T Adp
I.. d $ 24 ’
] J ;Rlo A g Ligg L e). L id 1 o7
T 114p 2 2 T 1.238p 7 .021p° | .028p° | .007p | 1.048p | I T .a7p
L o] '] L 8 Rl L C12
P] .007p _L c10 .2p ¥ 1000 T 1
| 1= []
(2) L 1 i 1 : ! L + 4
Figure 2: The circuit drawn as a 2-port network with output across C7.
R1 R2 R3 R4 RS R6 R7
10 72 34 9 72 10 120 \
(1)evn- l AN AN A A e AR —— *3)
: 0
¢ 48 - R8
‘1—1 | | S 2a
L a Lhio L €2 1 3 | ca | ¢ | c6 L g gru | a2
T .114p | 2 % 1.238p | .021p | .028p | .007p | 1.048p T .a7p ¢ 1000 T 1p
1 co 3 1 L
T .007p | c10 -2p
T .2p
Bt — - ~ %0

Figure 3: The circuit drawn as a 2-port network with output across C12.
Using RLC Building Blocks
All of the building blocks are formed by selecting appropriate values with the rfckt.shuntrilc

function shown in Figure 4 or the rfckt.seriesrlc function shown in Figure 5. The 2-port building
blocks are then connected using rfckt.cascade as shown in Figure 6 or rfckt.series as shown

in Figure 7.

7-42

MOS Interconnect and Crosstalk Using RFCKT Objects

L

-

Figure 4: The 2-port network created by the rfckt.shuntrlc function.

C
AN e et <o (3

Figure 5: The 2-port network created by the rfckt.seriesrlc function.

7-43

7 RF Toolbox Examples

(— —%3)
(B— —4)

Figure 6: Connecting 2-port networks with the rfckt.cascade function.

Figure 7: Connecting 2-port networks with the rfckt.series function.

Shared Pieces of the 2-Port Networks

The following MATLAB code constructs the portion of the network shared between the two variants.

7-44

MOS Interconnect and Crosstalk Using RFCKT Objects

Rl = rfckt.seriesrlc('R',10);
Cl = rfckt.shuntrlc('C',0.114e-12);
R9 = rfckt.shuntrlc('R',48);
C9 = rfckt.shuntrlc('C',0.007e-12);

R10 = rfckt.shuntrlc('R',24);

C10 = rfckt.shuntrlc('C',0.2e-12);

R10C10 = rfckt.series('Ckts', {R10,C10});
C9R10C10 = rfckt.cascade('Ckts',{C9,R10C10});
ROCI9R10C10 = rfckt.series('Ckts"',{R9,C9R10C10});

R2 = rfckt.seriesrlc('R',72);

C2 = rfckt.shuntrlc('C',1.238e-12);
R3 = rfckt.seriesrlc('R',34);

C3 = rfckt.shuntrlc('C',0.021e-12);
R4 = rfckt.seriesrlc('R',96);

C4 = rfckt.shuntrlc('C' 0 028e-12);
R5 = rfckt.seriesrlc('R',72);

C5 = rfckt.shuntrlc('C',0.007e-12);
R6 = rfckt.seriesrlc('R"', 1);

C6 = rfckt.shuntrlc('C',1.048e-12);
R7 = rfckt.seriesrlc('R',120);

R8 = rfckt.shuntrlc('R',24);

C8 = rfckt.shuntrlc('C',0.2e-12);

R8C8 = rfckt.series('ths' ,{R8,C8});

sharedckt = rfckt.cascade('Ckts', ...
{R1,C1,R9C9R10C10,R2,C2,R3,(C3,R4,C4,R5,C5,R6,C6,R7,R8C8});

% Additional shared building blocks used in both 2-port networks.
C7 = rfckt.shuntrlc('C',0.47e-12);
R11C12 = rfckt.shuntrlc('R',1000,'C',6le-12);

Construct Each 2-Port Network

Figure 2 shows that constructing a 2-port network with an output port across C7 requires creating
C11 using rfckt.shuntrlc, then combining C11 with R11 and C12 using rfckt.series, and
finally combining C11R11C12 with the rest of the network and C7 using rfckt. cascade.

Similarly, Figure 3 shows that constructing a 2-port network with an output port across C12 requires
creating another version of C11 (C11b) using rfckt.seriesrlc and combining all the parts
together using rfckt.cascade.

C11 = rfckt.shuntrlc('C',0.1e-12);
C11R11C12 = rfckt.series('Ckts',{C11,R11C12});
cktC7 = rfckt.cascade('Ckts', {sharedckt,C11R11C12,C7});

Cllb = rfckt.seriesrlc('C',0.1e-12);
cktC1l2 = rfckt.cascade(' ths ,{sharedckt,C7,C11b,R11C12});

Simulation Setup

The input signal used by Pillage and Rohrer is a voltage ramp from 0 to 5 volts with a rise time of one
nanosecond and a duration of ten nanoseconds. The following MATLAB code models this signal with
1000 timepoints with a sampleTime of 0.01 nanoseconds.

The following MATLAB code also uses the Logspace function to generate a vector of 101

logarithmically spaced analysis frequencies between 1 Hz and 100 GHz. Specifying a wide set of
frequency points improves simulation accuracy.

7-45

7 RF Toolbox Examples

sampleTime = le-11;
t = (0:1000) '*sampleTime;
input = [(0:100)"'*(5/100); (101:1000)'*0+5];

freq = logspace(0,11,101)";
Simulate Each 2-Port Network
To simulate each network:

The analyze function extracts S-parameters over the specified frequency range.

2 The s2tf function, with option = 2, computes the gain from the source voltage to the output
voltage. It allows arbitrary source and load impedances, in this case Zsource = 0 and Zload =
Inf. The resulting transfer functions tfC7 and tfC12 are frequency-dependent data vectors that
can be fit with rational-function approximation.

3 The rationalfit function generates high-accuracy rational-function approximations. The
resulting approximations match the networks to machine accuracy.

4 The timeresp function computes the analytic solution to the state-space equations defined by a
rational-function approximation. This methodology is fast enough to enable one to push a million
bits through a channel.

analyze(cktC7,freq);

sparamsC7 = cktC7.AnalyzedResult.S Parameters;
tfC7 = s2tf(sparamsC7,50,0,Inf,2);

fitC7 = rationalfit(freq,tfC7);

outputC7 = timeresp(fitC7,input,sampleTime);

analyze(cktC12, freq);

sparamsCl2 = cktCl2.AnalyzedResult.S Parameters;
tfCl2 = s2tf(sparamsCl12,50,0,Inf,2);

fitCl2 = rationalfit(freq,tfCl1l2);

outputCl2 = timeresp(fitCl2,input,sampleTime);

Plot Transient Responses

The outputs match Figures 23 and 24 of the Pillage and Rohrer paper.

figure

plot(t,input,t,outputC7, 'LineWidth',2)

axis([0 2.5e-9 0 5.5])

title('Ramp Response of Low- to Mid-frequency MOS Circuit Interconnect with Crosstalk')
xlabel('Time (sec)")

ylabel('Voltage (volts)')

legend('Vinput','V(C7)"', 'Location', 'NorthWest")

7-46

MOS Interconnect and Crosstalk Using RFCKT Objects

Ramp Response of Low- to Mid-frequency MOS Circuit Interconnect with Crosst:
5. 5 T T T T

Vinput
ar V(CT)

4.5

2587

Voltage (volts)

D 1 1 1 1
0 0.5 1 1.5 2 2.5

Time (sec) w1072

figure

plot(t,input,t,outputCl2, 'LineWidth"',2)

axis([0 5e-9 0 .5])

title('Crosstalk in Low- to Mid-frequency MOS Circuit Interconnect with Ramp Input')
xlabel('Time (sec)')

ylabel('Voltage (volts)"')

legend('Vinput', 'V(C12)"', 'Location', 'NorthEast")

7-47

7 RF Toolbox Examples

7-48

Crosstalk in Low- to Mid-frequency MOS Circuit Interconnect with Ramp Input

0.5
Vinput
045 VIiC12) | T
0.4 r T
0.357 T

D 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 & 4.5 5

Time (sec) w1072

Verify the Rational Fit Outside the Fit Range

Though not shown in this example, you can also use the freqresp function to check the behavior of
rationalfit well outside the specified frequency range. The fit outside the specified range can
sometimes cause surprising behavior, especially if frequency data near 0 Hz (DC) was not provided.

To perform this check for the rational-function approximation in this example, uncomment and run
the following MATLAB code.

widerFreqs = logspace(0,12,1001);

respC7 = freqresp(fitC7,widerFreqs);

figure
loglog(freqs,abs(tfC7),'+',widerFreqs,abs(respC7))
respCl2 = freqresp(fitCl2,widerFreqs);

figure
loglog(freqs,abs(tfCl2),'+',widerFreqs,abs(respCl2))

d° 0° o° 0 o° o° o°

Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-Port S-Parameters)

Modeling a High-Speed Backplane (Measured 16-Port S-
Parameters to 4-Port S-Parameters)

This example shows how to use RF Toolbox™ to import N-port S-parameters representing high-speed
backplane channels, and converts 16-port S-parameters to 4-port S-parameters to model the channels
and the crosstalk between the channels.

With the 4-port S-parameters, a rational function object can be built for a differential channel. The
second part of the example -- “Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational
Function)” on page 7-53 -- will show how to use rational functions to model a differential high-speed
backplane channel.

With the rational function object, the Time-Domain Reflectometry and Time-Domain Transmission can
be calculated for a differential channel. The third part of the example -- “Modeling a High-Speed
Backplane (4-Port S-Parameters to Differential TDR and TDT)” on page 7-60 -- will show how to use
rational functions to calculate the Time-Domain Reflectometry and Time-Domain Transmission.

With the rational function object, a Simulink® model can be built for a differential channel. The
fourth part of the example -- “Modeling a High-Speed Backplane (Rational Function to a Simulink®
Model)” on page 7-63 -- will show how to build a Simulink model from a rational function.

With the rational function object, a Verilog-A module can also be generated for a differential channel.
The fifth part of the example -- “Modeling a High-Speed Backplane (Rational Function to a Verilog-A
Module)” on page 7-66 -- will show how to generate a Verilog-A module from a rational function.

%_:;::F‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!.::f:'14
_ g 13
%_::::ii----------------!f:ﬂ;'12
6 ~ I 11
?ﬂ" i 10
8 pi= g

* *

+ *
Lessssssssssssssssssssssssssssssssssl

Figure 1: 16-Port differential backplane
Read the Single-Ended 16-Port S-Parameters

Read a Touchstone® data file into an sparameters object. The data in this file are the 50-ohm S-
parameters of a 16-port differential backplane designed for a 2-Gbps high-speed signal, shown in
Figure 1, measured at 1496 frequencies ranging from 50 MHz to 15 GHz.

filename = 'default.slép’;
backplane = sparameters(filename)

backplane =
sparameters: S-parameters object

NumPorts: 16

7-49

7 RF Toolbox Examples

Frequencies: [1496x1 double]
Parameters: [16x16x1496 double]
Impedance: 50

rfparam(obj,i,j) returns S-parameter Sij

freq = backplane.Frequencies;
Convert the 16-Port S-Parameters to 4-Port S-Parameters to Model a Differential Channel

Use the snp2smp function to convert 16-port S-parameters to 4-port S-parameters that represent the
first differential channel. The port index of this differential channel, N2M, specifies how the ports of
the 16-port S-parameters map to the ports of the 4-port S-parameters, is [1 16 2 15]. (The port
indices of the second, third and fourth channels are [3 14 4 13],[5 12 6 11] and [7 10 8 9],
respectively). The other 12 ports, [3 4 5 6 7 8 9 10 11 12 13 14], are terminated with the
characteristic Impedance specified by the sparameters object. Then, create an sparameters
object with 4-port S-parameters for the first differential channel.

(Port 1) (Port 16)
Port 1 > ----- >| [<e---- < Port 2
| DUT |
Port 3 > ----- >| [<e---- < Port 4
(Port 2) (Port 15)

n2m = [1 16 2 15];

z0 = backplane.Impedance;

first4portdata = snp2smp(backplane.Parameters,z0,n2m,z0);
first4portsparams = sparameters(first4portdata, freq,z0)

first4portsparams =
sparameters: S-parameters object

NumPorts: 4
Frequencies: [1496x1 double]
Parameters: [4x4x1496 double]
Impedance: 50

rfparam(obj,i,j) returns S-parameter Sij

Plot S21 and S43 of the first differential channel.

figure
rfplot(firstdportsparams,2,1)

hold on
rfplot(first4portsparams,4,3,'-r')

7-50

Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-Port S-Parameters)

Magnitude (dB)

—QD 1 1
0 & 10 15

Frequency (GHz)

If you want to write the 4-port S-parameters of the differential
channel into a |.s4p| file, then uncomment the line below.

[)
©
[)

)

0° o° o° o°

rfwrite(firstdportsparams, 'firstchannel.s4p')

Convert 16-Port S-Parameters to 4-Port S-Parameters to Model the Crosstalk Between Two
Differential Channels

Use the snp2smp function to convert 16-port S-parameters to 4-port S-parameters that represent the
crosstalk between port [3 4] and port [16 15]. As shown in Figure 1, these ports are on different
channels. The other 12 ports, [1 2 5 6 7 8 9 10 11 12 13 14], are terminated with the
characteristic Impedance specified by the sparameters object. Then, create an sparameters
object with 4-port S-parameters for the crosstalk.

(Port 3) (Port 16)
Port 1 > ----- >| |<----- < Port 2
| DUT |
Port 3 > ----- >| |<----- < Port 4
(Port 4) (Port 15)

n2m = [3 16 4 15];
crosstalk4portdata = snp2smp(backplane.Parameters,z0,n2m,z0);
crosstalk4portsparams = sparameters(crosstalk4portdata, freq,z0)

crosstalk4portsparams =
sparameters: S-parameters object

NumPorts: 4

7-51

7 RF Toolbox Examples

Frequencies: [1496x1 double]
Parameters: [4x4x1496 double]
Impedance: 50

rfparam(obj,i,j) returns S-parameter Sij

Plot S21, S43, S12 and S34 to show the crosstalk between these two channels.

figure
rfplot(crosstalkd4portsparams,2,1)

hold on
rfplot(crosstalkd4portsparams,4,3,'-r")
rfplot(crosstalkd4portsparams,1,2,'-k")
rfplot(crosstalkd4portsparams,3,4,'-g")

dB(s,,)
-30 dB(S,,)

dB(S.,)
dB(S.,,)

_ \| v

=40

34

-a0

-for

Magnitude (dB)

-80 T

100 | 1

-110 : -
0 5 10 15

Frequency (GHz)

If you want to write the 4-port S-parameters of the crosstalk into an
.s4p file, then uncomment the line below.

%
%

o° o° o o°

rfwrite(crosstalk4portsparams, 'crosstalk.s4p')

7-52

Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational Function)

Modeling a High-Speed Backplane (4-Port S-Parameters to a
Rational Function)

This example shows how to use RF Toolbox™ to model a differential high-speed backplane channel
using rational functions. This type of model is useful to signal integrity engineers, whose goal is to
reliably connect high-speed semiconductor devices with, for example, multi-Gbps serial data streams
across backplanes and printed circuit boards.

Compared to traditional techniques such as linear interpolation, rational function fitting provides
more insight into the physical characteristics of a high-speed backplane. It provides a means, called
model order reduction, of making a trade-off between complexity and accuracy. For a given accuracy,
rational functions are less complex than other types of models such as FIR filters generated by IFFT
techniques. In addition, rational function models inherently constrain the phase to be zero on
extrapolation to DC. Less physically-based methods require elaborate constraint algorithms in order
to force the extrapolated phase to zero at DC.

Port 4: Far End -

Faort 2: Far End +

Paort 1; Mear End + Port 3: Mear End -

Figure 1: A differential high-speed backplane channel

Read the Single-Ended 4-Port S-Parameters and Convert Them to Differential 2-Port S-
Parameters

Read a Touchstone® data file, default.s4p, into an sparameters object. The parameters in this
data file are the 50-ohm S-parameters of the single-ended 4-port passive circuit shown in Figure 1,
given at 1496 frequencies ranging from 50 MHz to 15 GHz. Then, get the single-ended 4-port S-
parameters and use the matrix conversion function s2sdd to convert them to differential 2-port S-
parameters. Finally, plot the differential S11 parameter on a Smith chart.

7-53

7 RF Toolbox Examples

filename = 'default.sdp';
backplane = sparameters(filename);
data = backplane.Parameters;

freq = backplane.Frequencies;

z0 = backplane.Impedance;

Convert to 2-port differential S-parameters.

diffdata = s2sdd(data);
diffz0 = 2*z0;

By default, s2sdd expects ports 1 & 3 to be inputs and ports 2 & 4 to be outputs. However if your data
has ports 1 & 2 as inputs and ports 3 & 4 as outputs, then use 2 as the second input argument to
s2sdd to specify this alternate port arrangement. For example, diffdata = s2sdd(data,2);

diffsparams = sparameters(diffdata,freq,diffz0)

diffsparams =
sparameters: S-parameters object

NumPorts: 2
Frequencies: [1496x1 double]
Parameters: [2x2x1496 double]
Impedance: 100
rfparam(obj,i,j) returns S-parameter Sij

figure
smithplot(diffsparams,1,1)

7-54

Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational Function)

Compute the Transfer Function and Its Rational Function Object Representation

First, use the s2tf function to compute the differential transfer function. Then, use the
rationalfit function to compute the analytical form of the transfer function and store it in an
rfmodel. rational object. The rationalfit function fits a rational function object to the specified
data over the specified frequencies. The run time depends on the computer, the fitting tolerance, the
number of data points, etc.

difftransfunc = s2tf(diffdata,diffz0,diffz0,diffz0);

delayfactor = 0.98; % Delay factor. Leave at the default of zero if your
% data does not have a well-defined principle delay

rationalfunc = rationalfit(freq,difftransfunc, 'DelayFactor',delayfactor)

rationalfunc =
rfmodel.rational with properties:

A: [31x1 double]
C: [31x1 double]
D: 0
Delay: 6.5521e-09
Name: 'Rational Function'

npoles = length(rationalfunc.A);
fprintf('The derived rational function contains %d poles.\n',npoles);

The derived rational function contains 31 poles.

7-35

7 RF Toolbox Examples

Validate the Differential-Mode Frequency Response

Use the freqresp method of the rfmodel. rational object to get the frequency response of the
rational function object. Then, create a plot to compare the frequency response of the rational
function object and that of the original data. Note that detrended phase (i.e. phase after the principle
delay is removed) is plotted in both cases.

freqsforresp = linspace(0,20e9,2000)"';
resp = freqresp(rationalfunc,freqsforresp);

figure

subplot(2,1,1)

plot(freg*l.e-9,20*logl0O(abs(difftransfunc)), 'r',freqsforresp*l.e-9,
20*logl0(abs(resp)), 'b--', 'LineWidth',2)

title(sprintf('Rational Fitting with %d poles',npoles), 'FontSize',12)

ylabel('Magnitude (decibels)"')

xlabel('Frequency (GHz)")

legend('Original data', 'Fitting result')

subplot(2,1,2)

origangle = unwrap(angle(difftransfunc))*180/pi+360*freg*rationalfunc.Delay;

plotangle = unwrap(angle(resp))*180/pi+360*freqsforresp*rationalfunc.Delay;

plot(freg*l.e-9,origangle, 'r',freqsforresp*l.e-9,plotangle, 'b--", ...
"LineWidth',2)

ylabel('Detrended phase (deg.)')

xlabel('Frequency (GHz)")

legend('Original data', 'Fitting result')

Rational Fitting with 31 poles

Original data
= = == Fitting result | |

)
=
T

Magnitude (decibkels)
3 . £
=

60 | " - e]
BD 1 1 1 1 1 1 1 1 1
0 2 4 & 8 10 12 14 16 18 20
Frequency (GHz)
— D . ; ; ; ; ; ; . .
il Original data
E m wm [t
= 200 Fitting result | |
15}
m
a
-400 - .
D
=]
i
S -600 = .
&Q B
O A A A A : . . L T = -
0 2 4 & 8 10 12 14 16 18 20

Frequency (GHz)

7-56

Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational Function)

Calculate and Plot the Differential Input and Output Signals of the High-Speed Backplane

Generate a random 2 Gbps pulse signal. Then, use the timeresp method of the rfmodel. rational
object to compute the response of the rational function object to the random pulse. Finally, plot the
input and output signals of the rational function model that represents the differential circuit.

datarate = 2*1e9; % Data rate: 2 Gbps
samplespersymb = 100;

pulsewidth = 1/datarate;

ts = pulsewidth/samplespersymb;

numsamples = 2°17;

numplotpoints = 10000;

t in = double((1l:numsamples)')*ts;

input = sign(randn(1l,ceil(numsamples/samplespersymb)));
input = repmat(input, [samplespersymb, 1]);
input = input(:);

[output,t out] = timeresp(rationalfunc,input,ts);

figure

subplot(2,1,1)

plot(t in(l:numplotpoints)*1e9,input(1l:numplotpoints), 'LineWidth"',2)
title([num2str(datarate*le-9),' Gbps signal'], 'FontSize',12)
ylabel('Input signal')

xlabel('Time (ns)"')

axis([-inf,inf,-1.5,1.5])

subplot(2,1,2)

plot(t out(l:numplotpoints)*1e9,output(l:numplotpoints), 'LineWidth',2)
ylabel('Output signal')

xlabel('Time (ns)"')

axis([-inf,inf,-1.5,1.5])

7-57

7 RF Toolbox Examples

7-58

2 Gbps signal

‘I-- p— p— p— pE—— g — -

Input signal
=

5 10 15 20 25 30 35 40 45 50

Time (ns)
1k _
‘m
=
=
5]
50 1
o
S
]
=1 -
0 5 10 15 20 25 30 35 40 45
Time (ns)

Plot the Eye Diagram of the 2-Gbps Output Signal

Estimate and remove the delay from the output signal and create an eye diagram by using
Communications Toolbox™ functions.

if ~isempty(which('comm.EyeDiagram'))
eyedi = comm.EyeDiagram('SampleRate',1./ts, ...
'SamplesPerSymbol',samplespersymb, '‘DisplayMode’, '2D color histogram');
% Update the eye diagram object with the transmitted signal
estdelay = floor(rationalfunc.Delay/ts);
eyedi(output(estdelay+l:end));

end

Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational Function)

=
File Tools Wiew Help

@-a a3 H- - BHBe

i}

=)
[='S
=
=]

i

Processing

Trace #&: T=0

7-59

7 RF Toolbox Examples

Modeling a High-Speed Backplane (4-Port S-Parameters to
Differential TDR and TDT)

7-60

This example shows how to use RF Toolbox™ functions to calculate the TDR (Time-Domain
Reflectometry) and TDT (Time-Domain Transmission) of a differential high-speed backplane channel.

Read the Single-Ended 4-Port S-Parameters and Convert Them to Differential 2-Port S-
Parameters

Read a Touchstone® data file, default.s4p, into an sparameters object. The parameters in this
data file are the 50-ohm S-parameters of a single-ended 4-port passive circuit, measured at 1496
frequencies ranging from 50 MHz to 15 GHz. Then, get the single-ended 4-port S-parameters from
the data object, and use the matrix conversion function s2sdd to convert them to differential 2-port
S-parameters.

filename = 'default.sdp';
backplane = sparameters(filename);
data backplane.Parameters;

freq backplane.Frequencies;

z0 = backplane.Impedance;

Convert to 2-port differential S-parameters.

diffdata = s2sdd(data);
diffsparams = sparameters(diffdata, freq,2*z0);

Calculate and Plot the Differential Time-Domain Reflectometry

TDR is the reflected voltage signal for a step input. First, extract the differential S11 data using the
rfparam function, and convert the S11 data to TDR voltage transfer function data [1]. Next, create a
rational function of that data using the rationalfit function, then compute the TDR using the
stepresp function of the rfmodel. rational object. Lastly, plot the calculated TDR.

sll = rfparam(diffsparams,1,1);

Vin = 1;

tdrfreqdata = Vin*(sll+l)/2;

tdrfit = rationalfit(freq,tdrfreqdata, 'NPoles',350);
Ts = 5e-12;

N = 5000; % number of samples

Trise = 5e-11; % Define a step signal
[Vtdr,tdrT] = stepresp(tdrfit,Ts,N,Trise);
figure
plot(tdrT*1e9,Vtdr, 'r', 'LineWidth"',2)
ylabel('Differential TDR (V)"')
xlabel('Time (ns)"')

legend('Calculated TDR")

ylim([0.46 0.55])

Modeling a High-Speed Backplane (4-Port S-Parameters to Differential TDR and TDT)

0.55 T T T :
Calculated TDR
0.54 7

0.53]

—

0.52]

0.51]

Differential TDR (VW
[
tn

0.497 _

0.48]

0.47 _

0.46 ' : ' '
0 5 10 15 20 25

Time (ns)

Calculate and Plot the Differential Time-Domain Transmission

TDT is the transmitted voltage signal for a step input. Use the rationalfit function to get the
rational function object of the TDT voltage frequency data, then use the stepresp function to
compute TDT. Lastly, plot the calculated TDT.

delayfactor = 0.98; % Delay factor. Set delay factor to zero if your
% data does not have a well-defined delay

s21 = rfparam(diffsparams,2,1);

tdtfreqdata = Vin*s21/2;

tdtfit = rationalfit(freq,tdtfreqdata, 'DelayFactor',delayfactor);

Ts = 5e-12;

N = 5000; % number of samples

Trise = 5e-11;

[tdt,tdtT] = stepresp(tdtfit,Ts,N,Trise);

figure

plot(tdtT(1:N)*1e9,tdt(1:N),

ylabel('Differential TDT (V)

xlabel('Time (ns)"')

legend('Calculated TDT', 'Location', 'best')

'r','LineWidth',2)
")

7-61

7 RF Toolbox Examples

D5 T T T T

0457]

Calculated TDT
0.357T T

=
(%]
T
1

0.25T]

Differential TDT (V)
[’
(48]

=
b
n
T
1

=
=
T
1

0.05T]

D L 1 1 1
0 5 10 15 20 25

Time (ns)
References

[1] A. S. Ali, R. Mittra. "Time-Domain Reflectometry using Scattering Parameters and a De-

Embedding Application" Technical Report, Electromagnetic Communication Laboratory Report No.
86-4, May 1986.

7-62

Modeling a High-Speed Backplane (Rational Function to a Simulink® Model)

Modeling a High-Speed Backplane (Rational Function to a
Simulink® Model)

This example shows how to use Simulink® to simulate a differential high-speed backplane channel.
The example first reads a Touchstone® data file that contains single-ended 4-port S-parameters for a
differential high-speed backplane and converts them to 2-port differential S-parameters. It computes
the transfer function of the differential circuit and uses the rationalfit function to fit a closed-
form rational function to the circuit's transfer function. Then, the example converts the poles and
residues of the rational function object into the numerators and denominators of the Laplace
Transform S-Domain transfer functions that it uses to build the Simulink model of the rational
function object.

To run this example, you must have Simulink installed.

Read the Single-Ended 4-Port S-Parameters and Convert Them to Differential 2-Port S-
Parameters

Read a Touchstone data file, default.s4p, into an sparameters object. The parameters in this data
file are the 50-ohm S-parameters of a single-ended 4-port passive circuit, measured at 1496
frequencies ranging from 50 MHz to 15 GHz. Then, get the single-ended 4-port S-parameters from
the data object, and use the matrix conversion function s2sdd to convert them to differential 2-port
S-parameters.

filename = 'default.sdp';
backplane = sparameters(filename);
data backplane.Parameters;

freq backplane.Frequencies;

z0 = backplane.Impedance;

Convert to 2-port differential S-parameters. This operation pairs together odd-numbered ports first,
followed by the even-numbered ports. If a different configuration has been used to measure the single
ended S-parameters, you can specify a different second argument in the s2sdd command. For
example, option "2" will allow you to pair the input and output ports in ascending order. Alternatively,
you can use the command snp2smp to change the port order.

diffdata = s2sdd(data,l);
diffz0 = 2*z0;

Compute the Transfer Function and Its Rational Function Representation

First, use the s2tf function to compute the differential transfer function. Then, use the
rationalfit function to compute the closed form of the transfer function and store it in an
rfmodel. rational object. The rationalfit function fits a rational function object to the specified
data over the specified frequencies.

difftf = s2tf(diffdata,diffz0,diffz0,diffz0);
fittol = -30; % Rational fitting tolerance in dB
delayfactor = 0.9; % Delay factor

rationalfunc = rationalfit(freq,difftf,fittol, 'DelayFactor', delayfactor)
npoles = length(rationalfunc.A);
fprintf('The derived rational function contains %d poles.\n', npoles);

rationalfunc =

7-63

7 RF Toolbox Examples

7-64

rfmodel.rational with properties:

A: [20x1 double]
C: [20x1 double]
D: 0
Delay: 6.0172e-09
Name: 'Rational Function'

The derived rational function contains 20 poles.

Get the Numerator and Denominator of the Laplace Transform S-Domain Transfer Functions

This example uses Laplace Transform S-Domain transfer functions to represent the backplane in the
Simulink model. Convert the poles and corresponding residues of the rational function object into
numerator and denominator form for use in the Laplace Transform transfer function blocks. Each
transfer function block represents either one real pole and the corresponding real residue, or a pair
of complex conjugate poles and residues, so the transfer function block always has real coefficients.
For this example, the rational function object contains 2 real poles/residues and 6 pairs of complex
poles/residues, so the Simulink model contains 8 transfer function blocks.

A = rationalfunc.A;

C = rationalfunc.C;

den = cell(size(A));

num = cell(size(A));

k =1; % Index of poles and residues

n=20; % Index of numerators and denominators

while k <= npoles

if isreal(A(k)) % Real poles
n=n+1;
num{n} = C(k);
den{n} = [1, -A(k)I];
k =k + 1;
else % Complex poles
n=n=+1;
real a = real(A(k));
imag a = imag(A(k));
real ¢ = real(C(k));
imag ¢ = imag(C(k));
num{n} = [2*real c, -2*(real a*real c+imag a*imag c)];
den{n} = [1, -2*real a, real a™2+imag a"2];
k =k + 2;
end
end
den = den(1l:n);
num = num(1l:n);

Build the Simulink Model of the Backplane

Build a Simulink model of the backplane using the Laplace Transform transfer functions. Then,
connect a random source to the input of the backplane and a scope to its input and output.

modelname = fliplr(strtok(fliplr(tempname), filesep));
simulink rfmodel build rational system helper(modelname , numel(num))
simulink rfmodel add source sink helper(modelname)

Modeling a High-Speed Backplane (Rational Function to a Simulink® Model)

h
[]
Y

o

- R
T I =

Rational Model Cutput

Figure 1. Simulink model for a rational function
Simulate the Simulink Model of the Rational Function

When you simulate the model, the Scope shows the impact of the differential backplane on the
random input signal.

set param([modelname, '/Rational Model Output'], 'Open', 'on')

h = findall(0, 'Type', 'Figure', 'Name', 'Rational Model Output');
h.Position = [200, 216, 901, 442];

sim(modelname);

4.

File

B-BOP® |- aA--FH-

Ready

View Simulation Help k

Sample based | T=4 9e2-08

Close the Model

close system(modelname, 0)

7-65

7 RF Toolbox Examples

Modeling a High-Speed Backplane (Rational Function to a
Verilog-A Module)

This example shows how to use RF Toolbox™ functions to generate a Verilog-A module that models

the high-level behavior of a high-speed backplane. First, it reads the single-ended 4-port S-
parameters for a differential high-speed backplane and converts them to 2-port differential S-

parameters. Then, it computes the transfer function of the differential circuit and fits a rational
function to the transfer function. Next, the example exports a Verilog-A module that describes the
model. Finally, it plots the unit step response of the generated Verilog-A module in a third-party

circuit simulation tool.

Use a Rational Function Object to Describe the High-Level Behavior of a High-Speed
Backplane

Read a Touchstone® data file, default.s4p, into an sparameters object. The parameters in this
data file are the 50-ohm S-parameters of a single-ended 4-port passive circuit, measured at 1496
frequencies ranging from 50 MHz to 15 GHz. Then, extract the single-ended 4-port S-parameters

from the data stored in the Parameters property of the sparameters object, use the s2sdd

function to convert them to differential 2-port S-parameters, and use the s2tf function to compute
the transfer function of the differential circuit. Then, use the rationalfit function to generate an
rfmodel. rational object that describes the high-level behavior of this high-speed backplane. The
rfmodel. rational object is a rational function object that expresses the circuit's transfer function
in closed form using poles, residues, and other parameters, as described in the rationalfit

reference page.

filename = 'default.sdp';
backplane = sparameters(filename);
data = backplane.Parameters;

freq = backplane.Frequencies;

z0 = backplane.Impedance;

Convert to 2-port differential S-parameters.

diffdata = s2sdd(data);
diffz0 = 2*z0;
difftf = s2tf(diffdata,diffz0,diffz0,diffz0);

Fit the differential transfer function into a rational function.

fittol = -30; % Rational fitting tolerance in dB
delayfactor = 0.9; % Delay factor
rationalfunc = rationalfit(freq,difftf,fittol, 'DelayFactor',delayfactor)

rationalfunc =
rfmodel.rational with properties:

A: [20x1 double]
C: [20x1 double]
D: O
Delay: 6.0172e-09
Name: 'Rational Function'

7-66

Modeling a High-Speed Backplane (Rational Function to a Verilog-A Module)

Export the Rational Function Object as a Verilog-A Module

Use the writeva method of the rfmodel. rational object to export the rational function object as
a Verilog-A module, called samplepassivel, that describes the rational model. The input and output
nets of samplepassivel are called line in and line out. The predefined Verilog-A discipline,
electrical, describes the attributes of these nets. The format of numeric values, such as the
Laplace transform numerator and denominator coefficients, is %12 . 10e. The electrical discipline is
defined in the file disciplines.vams, which is included in the beginning of the

samplepassivel.va file.

workingdir = tempname;
mkdir(workingdir)

writeva(rationalfunc, fullfile(workingdir, 'samplepassivel'),
‘line in', 'line out', ‘'electrical', '%12.10e’,

type(fullfile(workingdir, 'samplepassivel.va'));

// Module: samplepassivel

// Generated by MATLAB(R) 9.9 and the RF Toolbox 4.0.

// Generated on: 25-Aug-2020 17:45:42
“include "disciplines.vams"
module samplepassivel(line_in, line out);

electrical line in, line out;
electrical nodel;

real nnl[0:1], nn2[0:1], nn3[0:1], nn4[0:1], nn5[0:11],
real dd1[0:2], dd2[0:2], dd3[0:2], dd4[0:2], dd5[0:2],

analog begin

@(initial step) begin

nnl[0] = -3.8392614832e+18;
nnl[1l] = 5.2046393014e+07;
dd1[0] = 2.8312609831e+21;
dd1[1] = 3.5124823781e+09;
dd1l[2] = 1.0000000000e+00;
nn2[0] = -2.0838483814e+19;
nn2[1] = 5.3487174017e+08;
dd2[0] = 1.8020362314e+21;
dd2[1] = 7.8266367089e+09;
dd2[2] = 1.0000000000e+00;
nn3[0] = 1.7726270794e+19;
nn3[1] = 2.5185716022e+09;
dd3[0] = 1.2157471895e+21;
dd3[1] = 8.1132784895e+09;
dd3[2] = 1.0000000000e+00;
nn4[0] = 2.3112282793e+20;
nn4[1] = 9.2690544437e+08;
dd4[0] = 7.9582429152e+20;
dd4[1] = 1.1379108659e+10;
dd4[2] = 1.0000000000e+00;
nn5[0] = 8.9321469721e+19;
nn5[1] = -1.4945928109e+10;
dd5[0] = 4.1473706594e+20;

'disciplines.vams');

nn7[0:11],
dd7[0:217,

nn8[0:1], nn9[0:11],
dd8[0:2], dd9[0:2],

7-67

I
(

7 RF Toolbox Examples

dd5[1] = 1.1346735824e+10;

dd5[2] = 1.0000000000e+00;

nn6[0] = -3.5180951909e+20;

nn6[1] = -1.9895507212e+10;

dd6[0] = 1.9080843811e+20;

dd6[1] = 1.0434555792e+10;

dd6[2] = 1.0000000000e+00;

nn7[0] = -1.0593240107e+20;

nn7[1] = 1.9248932577e+10;

dd7[0] = 6.1152960549e+19;

dd7[1] = 1.0001203231e+10;

dd7[2] = 1.0000000000e+00;

nn8[0] = 5.4441539403e+16;

nn8[1] = -9.7818749687e+06;

dd8[0] = 4.3821946493e+19;

dd8[1] = 6.6700188623e+08;

dd8[2] = 1.0000000000e+00;

nn9[0] = 2.2556903052e+16;

nn9[1] = 7.9711163023e+06;

ddo[0] = 2.1228807651e+19;

dd9[1] = 4.9531801417e+08;

dd9[2] = 1.0000000000e+00;

nnl10[0] = 1.1592988960e+10;

dd10[0] = 3.0829914556e+09;

dd10[1] = 1.0000000000e+00;

nnl1l[0] = 1.2852839051e+08;

dd11[0] = 5.9779845807e+08;

dd11[1] = 1.0000000000e+00;
end
V(nodel) <+ laplace nd(V(line_in), nnl, ddl);
V(nodel) <+ laplace nd(V(line_in), nn2, dd2);
V(nodel) <+ laplace nd(V(line_in), nn3, dd3);
V(nodel) <+ laplace nd(V(line_in), nn4, dd4);
V(nodel) <+ laplace nd(V(line_in), nn5, dd5);
V(nodel) <+ laplace nd(V(line_in), nn6, dd6);
V(nodel) <+ laplace nd(V(line_in), nn7, dd7);
V(nodel) <+ laplace nd(V(line_in), nn8, dd8);
V(nodel) <+ laplace nd(V(line_in), nn9, dd9);
V(nodel) <+ laplace nd(V(line_in), nnl0, dd10);
V(nodel) <+ laplace nd(V(line_in), nnll, dd1l);
V(line out) <+ absdelay(V(nodel), 6.0171901584e-09);

end
endmodule

Plot the Unit Step Response of the Generated Verilog-A Module

Many third-party circuit simulation tools support the Verilog-A standard. These tools simulate
standalone components defined by Verilog-A modules and circuits that contain these components. The
following figure shows the unit step response of the samplepassivel module. The figure was
generated with a third-party circuit simulation tool.

7-68

Modeling a High-Speed Backplane (Rational Function to a Verilog-A Module)

tansiant response

Input Step, ¥ (W)

0.0
1000 VITTVeOrT

a00.0

BOO.O /

: f
=
5 400.0
B
5
© f
2000 J
o)
—200.0r
9] 50 10 13 20 23 0
time (ns)

Figure 1: The unit step response.

delete(fullfile(workingdir, 'samplepassivel.va'));
rmdir(workingdir)

7-69

7 RF Toolbox Examples

Using 'NPoles' Parameter With rationalfit

This example shows how to use the 'NPoles' parameter to improve the quality of the output of
rationalfit. By default, the rationalfit function uses 48 or fewer poles to find the rational
function that best matches the data. If 48 poles is not enough, it may be advantageous to change the
range of the number of poles used by rationalfit.

First, read in the bandpass filter data contained in the file npoles bandpass example.s2p, and
plot the S21 data. Next, use the rationalfit function to fit a rational function to the S21 data, with
the 'NPoles' parameter set to its default value, and visually compare the results to the original data.
Lastly, use rationalfit again, this time specifying a larger number of poles, and see if the result
improves.

Read and Visualize Data

S = sparameters('npoles bandpass example.s2p');
figure

subplot(2,1,1)

rfplot(S,2,1,'db")

subplot(2,1,2)

rfplot(S,2,1, 'angle"')

0 A LA LN AL W,
o
= 50t .
&
=
=
= |
=100 ¢
=
_150 1 1 1 1 1 1 1 1 1
225 23 235 24 245 25 255 26 285 27 275
Frequency (GHz)
0
W
4]
22000 - 1
g
=
Jat]
=-4000 -]
=
<L
_EDUD 1 1 1 1 1 1 1 1 1

225 23 235 24 245 25 255 26 285 27 275
Frequency (GHz)

Analyze Output of rationalfit When Using Default Value for 'NPoles’

Use the rfparam function to extract the S21 values, and then call rationalfit.

7-70

Using 'NPoles' Parameter With rationalfit

s21 = rfparam(S,2,1);
datafreq = S.Frequencies;
defaultfit = rationalfit(datafreq,s2l);

Warning: Achieved only -13.0 dB accuracy with 48 poles, not -40.0 dB. Consider specifying a lar

Use the freqresp function to calculate the response of the output of rationalfit.

respfreq = 2.25e9:2e5:2.75e9;
defaultresp = freqresp(defaultfit, respfreq);

Compare the original data against the frequency response of the default rational function calculated
by rationalfit.

subplot(2,1,1)

plot(datafreq,20*loglO(abs(s21)),'.-")
hold on
plot(respfreq,20*loglO(abs(defaultresp)))
hold off

xlabel('Frequency (Hz)"')

ylabel('Magnitude (dB)"')

defaultnpoles = numel(defaultfit.A);

defaultstr = ['Default NPoles (Uses ',num2str(defaultnpoles),' poles)'];
title(defaultstr)

legend('Original Data', 'Default rationalfit', 'Location', 'best')
subplot(2,1,2)

plot(datafreq,unwrap(angle(s21))*180/pi,"'.-")
hold on
plot(respfreq,unwrap(angle(defaultresp))*180/pi)
hold off

xlabel('Frequency (Hz)"')
ylabel('Angle (degrees)')
legend('Original Data', 'Default rationalfit', 'Location', 'best')

7-71

7 RF Toolbox Examples

7-72

Default NPoles (Uses 48 poles)

-100

Magnitude (dB)

Original Data
Default rationalfit

_1 5"-"' 1 1 1 1 1 1 1 1 1
2.25 2.3 2.35 2.4 245 2.4 2.55 2.6 2.65 27 2.75

Frequency (Hz) <10°
|"_"| - T T T T T T T T =
Criginal Data
w Default rationalfit
& 2000 |
iy
=
[ak]
=-4000
| =
=T,
5000 : ' : : : : : . :
2.25 2.3 2.38 24 245 2.5 2,85 26 265 27 275

Frequency (Hz) <10°

Analyzing how well the output of rationalfit matches the original data, it appears that while the
default values of rationalfit do a reasonably good job in the center of the bandpass region, the fit
is poor on the edges of the bandpass region. It is possible that using a more complex rational function
will achieve a better fit.

Analyze Output of rationalfit When Using Custom Value for 'NPoles'

Fit the original S21 data, but this time, instruct rationalfit to use between 49 and 60 poles using
the 'NPoles' parameter.

customfit = rationalfit(datafreq,s21, 'NPoles',[49 60]);
customresp = fregqresp(customfit, respfreq);

Compare the original data against the frequency response of the custom rational function calculated
by rationalfit.

figure

subplot(2,1,1)
plot(datafreq,20*loglO(abs(s21)),"'.-")
hold on
plot(respfreq,20*loglO(abs(customresp)))
hold off

xlabel('Frequency (Hz)"')
ylabel('Magnitude (dB)"')

customnpoles = numel(customfit.A);
customstr = ['NPoles = [49 60] (Uses ',num2str(customnpoles),' poles)'];
title(customstr)

Using 'NPoles' Parameter With rationalfit

legend('Original Data', 'Custom rationalfit', 'Location', 'best"')
subplot(2,1,2)

plot(datafreq,unwrap(angle(s21))*180/pi,"'.-")
hold on
plot(respfreq,unwrap(angle(customresp))*180/pi)
hold off

xlabel('Frequency (Hz)"')
ylabel('Angle (degrees)')
legend('Original Data', 'Custom rationalfit', 'Location', 'best"')

NPoles = [49 60] (Uses 58 poles)

0
o
=2
[k]
=)
ER
‘=
3
=-150 1 Criginal Data
Custom raticnalfit
_EUD 1 1 1 1 1 1 1 1 1
2.25 2.3 2.35 2.4 245 2.5 2.55 2.6 2.65 2.7 2.75
Frequency (Hz) x10°
D 5 T T T T T T T T 3
Original Data
Q Custom rationalfit
& 2000
iy
=
[ak]
-4000
[y
o
_EDDD 1 1 1 1 1 1 1 1 1
2.25 2.3 2.35 24 245 2.5 2.55 2.6 2.65 27 275

Frequency (Hz) x10?

The fit using a larger number of poles is clearly more precise.

7-73

7 RF Toolbox Examples

Using 'Weight' Parameter With rationalfit

This example shows how to use the 'Weight' parameter to improve the quality of the output of
rationalfit. By default, the rationalfit function minimizes the absolute error between the data
and the rational function, treating all data points equally. When it is useful to emphasize some of the
data points more than the others, use the 'Weight' parameter.

If the magnitude of the input data has a large dynamic range, it is often useful to be more concerned
with the relative error at each data point, rather than the absolute error at each data point, so that
the data points with relatively smaller magnitudes are fit accurately. The common way to do this is to
set the "'Weight' parameter to 1./abs(data).

First, read in the saw filter data contained in the file sawfilter.s2p, and plot the S21 data. Next,
use the rationalfit function to fit a rational function to the S21 data, with the 'Weight' parameter
set to its default value, and visually compare the results to the original data. Lastly, use
rationalfit again, this time specifying the 'Weight' parameter to be 1./abs(S21), and see if the
result improves.

Read and Visualize Data

S = sparameters('sawfilter.s2p');
figure
subplot
rfplot(
subplot
rfplot(

2,1,1
2,1,
2,1,2
,2,1,'angle")

n—~ 0N~

Magnitude [(dB)
.
=

B0 F 4
_ED 1 1 1 1 1
1.8 2 2.2 24 26 2.8 3
Frequency (GHz)
0 . .
angh}[Sz,]
W
Q
2
T -500 .
=
Jak]
™
C
<L
-1000 1
1.8 2 2.2 24 26 2.8 3

Frequency (GHz)

7-74

Using 'Weight' Parameter With rationalfit

Analyze Output of rationalfit When Using Default Value for 'Weight'

Use the rfparam function to extract the S21 values, and then call rationalfit.
s21 = rfparam(S,2,1);

datafreq = S.Frequencies;
defaultfit = rationalfit(datafreq,s2l);

Use the freqresp function to calculate the response of the output of rationalfit

respfreq = 1e€9:1.5e6:4e9;
defaultresp = freqresp(defaultfit,respfreq);

Compare the original data against the frequency response of the default rational function calculated
by rationalfit.

subplot(2,1,1)

plot(datafreq,20*loglO(abs(s21)),'.-")
hold on
plot(respfreq,20*loglO(abs(defaultresp)))
hold off

xlabel('Frequency (Hz)"')

ylabel('Magnitude (dB)"')

defaultnpoles = numel(defaultfit.A);

defaultstr = ['Default Weight (Uses ',num2str(defaultnpoles),' poles)'];
title(defaultstr)

legend('Original Data', 'Default rationalfit', 'Location', 'best')
subplot(2,1,2)

plot(datafreq,unwrap(angle(s21))*180/pi,"'.-")
hold on
plot(respfreq,unwrap(angle(defaultresp))*180/pi)
hold off

xlabel('Frequency (Hz)")
ylabel('Angle (degrees)')
legend('Original Data', 'Default rationalfit', 'Location', 'best')

7-75

7 RF Toolbox Examples

Magnitude (dB)
=
=

-60 Original Data l
Default rationalfit
_BD 1 1 1 1 1
1 1.5 2 2.5 3 3.5 4
Frequency (Hz) <10°
D i . = I T
Original Data
’%‘ Default rationalfit
o
g 500 '
£
[=:]
=
<,
-1000 1
1 1.5 2 25 3 3.5 4
Frequency (Hz) <10

While the output of rationalfit is not awful, it does not match the regions in the data that are very
small in magnitude

figure
plot(datafreq,20*loglO(abs(s21)),'.-")
hold on
plot(respfreq,20*loglO(abs(defaultresp)))
hold off

axis([2.25e9 2.65e9 -75 -30])

xlabel('Frequency (Hz)"')

ylabel('Magnitude (dB)"')

title('Accuracy at Small Magnitudes Using Default Weight')
legend('Original Data', 'Default rationalfit', 'Location', 'best')

7-76

Using 'Weight' Parameter With rationalfit

Accuracy at Small Magnitudes Using Default Weight

-30

-35

-40

45

=50

-5

Magnitude (dB)

-60

Criginal Data
Default rationalfit

65 T

7o

_?5 1 1 1 1 1 1 1
2.25 2.3 2358 2.4 245 25 2.5656 26 265

Frequency (Hz) x10°

Using the 'Weight' parameter to make that data relatively more important can help the accuracy of
the fit.

Analyze Output of rationalfit When Using Custom Value for 'Weight'

By using a 'Weight' of 1. /abs(s21), rationalfit minimizes the relative error of the system,
instead of the absolute error of the system.

customfit = rationalfit(datafreq,s2l, 'Weight',1./abs(s21));
Warning: Achieved only -39.7 dB accuracy with 48 poles, not -40.0 dB. Consider specifying a lar

customresp = freqresp(customfit, respfreq);

Compare the original data against the frequency response of the custom rational function calculated
by rationalfit.

figure

subplot(2,1,1)
plot(datafreq,20*loglO(abs(s21)),"'.-")
hold on
plot(respfreq,20*loglO(abs(customresp)))
hold off

xlabel('Frequency (Hz)"')
ylabel('Magnitude (dB)"')

customnpoles = numel(customfit.A);
customstr = ['Weight = 1./abs(s21) (Uses ',num2str(customnpoles),' poles)'];
title(customstr)

7-77

7 RF Toolbox Examples

7-78

legend('Original Data', 'Custom rationalfit', 'Location', 'best"')
subplot(2,1,2)

plot(datafreq,unwrap(angle(s21))*180/pi,"'.-")
hold on
plot(respfreq,unwrap(angle(customresp))*180/pi)
hold off

xlabel('Frequency (Hz)"')
ylabel('Angle (degrees)')
legend('Original Data', 'Custom rationalfit', 'Location', 'best"')

Weight = 1./abs(s21) (Uses 48 poles)

[
=
T
1

Magnitude [(dB)
.
=

-60 Criginal Data 1
Custom raticnalfit
_BD 1 1 1 1 1
1 1.5 2 2.5 3 35 4
Frequency (Hz) <109
0 : — . : :
Original Data
Q Custom rationalfit
a
g 500 :
o
iy)
[y
T,
-1000 .
1 1.5 2 2.5 3 35 4
Frequency (Hz) 107

The plot shows that the custom 'Weight' parameter created a better fit for the data points with
smaller magnitudes.

figure
plot(datafreq,20*loglO(abs(s21)),'.-")
hold on
plot(respfreq,20*loglO(abs(customresp)))
hold off

axis([2.25e9 2.65e9 -75 -301])

xlabel('Frequency (Hz)")

ylabel('Magnitude (dB)"')

title('Accuracy at Small Magnitudes Using Custom Weight')
legend('Original Data', 'Custom rationalfit', 'Location', 'best')

Using 'Weight' Parameter With rationalfit

Magnitude (dB)

Accuracy at Small Magnitudes Using Custom Weight

-30

-35

-40

45

=50

-5

-60

65 T

7o

Criginal Data
Custom rationalfit

-fo
2.25

23 235 24 245 25 255 26 265
Frequency (Hz) x10°

7-79

7 RF Toolbox Examples

Using 'DelayFactor' Parameter With rationalfit

This example shows how to use the 'DelayFactor' parameter to improve the quality of the output of
rationalfit.

The rationalfit function selects a rational function that matches frequency domain data. If that
data contains a significant "time delay", which would present itself as a phase shift in the frequency
domain, then it might be very difficult to fit using a reasonable number of poles.

In these cases, when the input data contains a large negative slope (i.e. data with a large enough time
delay), we can ask rationalfit to first remove some of the delay from the data, and then find a
rational function that best fits the remaining "undelayed" data. The rationalfit function accounts
for the removed delay by storing it within the 'Delay' parameter of the output. By default,
rationalfit does not remove any delay from the data.

First, create differential transfer function data from 4-port backplane S-parameters. Next, attempt to
fit the data using the default settings of the rationalfit function. Lastly, use the 'DelayFactor'
parameter to improve the accuracy of the output of rationalfit.

Create Transfer Function

Read in the 4-port backplane S-parameter data from 'default.s4p'.

S = sparameters('default.s4p');
fourportdata = S.Parameters;
freq = S.Frequencies;
fourportZ0 = S.Impedance;

Convert 4-port single ended S-parameters into 2-port differential S-parameters

diffdata = s2sdd(fourportdata);
diffz0 = 2*fourportZ0;

Create a transfer function from the differential 2-port data
tfdata = s2tf(diffdata,diffz0,diffz0,diffz0);
Analyze Output of rationalfit When Using Default Value for 'DelayFactor"

Use the freqresp function to calculate the response of the output of rationalfit.
defaultfit = rationalfit(freq,tfdata)
Warning: Achieved only -10.2 dB accuracy with 48 poles, not -40.0 dB. Consider specifying a lar

defaultfit =
rfmodel.rational with properties:

A: [48x1 double]
C: [48x1 double]
D: O
Delay: 0
Name: 'Rational Function'

respfreq = 0:4e6:20e9;
defaultresp = freqresp(defaultfit, respfreq);

7-80

Using 'DelayFactor' Parameter With rationalfit

Note that the 'Delay' parameter is zero (no delay removed from the data).

Plot the original data vs. the default output of rationalfit.

figure
subplot(2,1,1)
tfdataDB = 20*1ogl0(abs(tfdata));

plot(freq,tfdataDB,"'.-")

hold on
plot(respfreq,20*loglO(abs(defaultresp)))
hold off

xlabel('Frequency (Hz)')

ylabel('Magnitude (dB)")

defaultnpoles = numel(defaultfit.A);

defstr = ['Default DelayFactor (Uses ',num2str(defaultnpoles),
title(defstr)

legend('Original Data', 'Default rationalfit', 'Location', 'best')
subplot(2,1,2)

tfdataphase = 180*unwrap(angle(tfdata))/pi;

poles)'];

plot(freq,tfdataphase,'.-")

hold on
plot(respfreq,180*unwrap(angle(defaultresp))/pi)
hold off

xlabel('Frequency (Hz)"')
ylabel('Angle (degrees)')
legend('Original Data', 'Default rationalfit', 'Location', 'best')

Default DelayFactor (Uses 48 poles)

Original Data
Default rationalfit

Magnitude (dB})
.
=

-0+
_BI:I 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.8 0.8 1 1.2 1.4 1.8 1.8 2
Frequency (Hz) <1010
4
0 10 . .

Angle (degrees)
, o .

Original Data
Default rationalfit

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency (Hz) <10

7-81

7 RF Toolbox Examples

7-82

Note that the results when using the default settings of rationalfit are poor. Because the phase of
the original data has a very large negative slope, it may be possible to improve the accuracy of the
rational function by using the 'DelayFactor' parameter.

Analyze Output of rationalfit When Using Custom Value for '‘DelayFactor"

'DelayFactor' must be set to a value between 0 and 1. Choosing which value is an exercise in trial and
error. For some data sets (those whose phase has an overall upward slope), changing the value of
'DelayFactor' will have no effect on the outcome.

Holding all other possible parameters of rationalfit constant, 0.98 is found to create a good fit.

customfit rationalfit(freq,tfdata, 'DelayFactor',0.98)

customfit
rfmodel.rational with properties:

A: [31x1 double]
C: [31x1 double]
D: 0
Delay: 6.5521e-09
Name: 'Rational Function'

customresp = fregresp(customfit, respfreq);
Note that the 'Delay' parameter is not zero (rationalfit removed some delay from the data).

Plot the original data vs. the custom output of rationalfit.

subplot(2,1,1)

plot(freq,tfdataDB,"'.-")

hold on
plot(respfreq,20*loglO(abs(customresp)))
hold off

xlabel('Frequency (Hz)"')

ylabel('Magnitude (dB)"')

customnpoles = numel(customfit.A);

customstr = ['DelayFactor = 0.98 (Uses ',num2str(customnpoles),
title(customstr)

legend('Original Data', 'Custom rationalfit', 'Location', 'best"')
subplot(2,1,2)

poles)'];

plot(freq,tfdataphase,'.-")

hold on
plot(respfreq,180*unwrap(angle(customresp))/pi)
hold off

xlabel('Frequency (Hz)"')
ylabel('Angle (degrees)')
legend('Original Data', 'Custom rationalfit', 'Location', 'best"')

Using 'DelayFactor' Parameter With rationalfit

DelayFactor = 0.98 (Uses 31 poles)

Original Data
Custom rationalfit

Magnitude (dB)
=
=

.GD L
_BD 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency (Hz) <100
4
D 1D T T T T T T T
Original Data
’%‘“-1 - Custom rationalfit 1
o
g2 :
=
L .
=
< 4L i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency (Hz) <100

The rational function created by using a custom value for 'DelayFactor' is much more accurate, and
uses fewer poles.

7-83

7 RF Toolbox Examples

Data Analysis on S-parameters of RF Data Files

7-84

This example shows how to perform statistical analysis on a set of S-parameter data files using
magnitude, mean, and standard deviation (STD). First, read twelve S-parameter files representing
twelve similar RF filters into the MATLAB® workspace and plot them. Next, plot and analyze the
passband response of these filters to ensure they meet statistical norms.

Read in S-parameters from Filter Data Files

Use built-in RF Toolbox functions for reading a set of S-Parameter data files. For each filter, collect
and plot the S21 raw values and S21 dB values. The names of the files are AWS Filter 1.s2p through
AWS Filter 12.s2p. These files represent 12 passband filters with similar specifications.

numfiles 12;

filename "AWS Filter "+(l:numfiles)+".s2p";
S = sparameters(filename(1l));

freq = S.Frequencies;

numfreq = numel(freq);

s21 data = zeros(numfreq,numfiles);

o o o° o° of

% Read Touchstone files

for n = 1l:numfiles
S = sparameters(filename(n));
s21 = rfparam(S,2,1);
s21 data(:,n) = s21;

end

s21 db = 20*logl0(abs(s21 data));

figure

plot(freq/le9,s21 db)

xlabel('Frequency (GHz)');

ylabel('Filter Response (dB)');
title('Transmission performance of 12 filters');
axis on;

grid on;

Construct filenames

Read file #1 for initial set-up

Frequency values are the same for all files
Number of frequency points

Preallocate for speed

Data Analysis on S-parameters of RF Data Files

Transmission performance of 12 filters

D T T T T

40 r

Filter Response (dB)

=50

—?D 1 1 1 1 1 1
1.9 1.95 2 205 2.1 2158 2.2

Frequency (GHz)

Filter Passband Visualization

225

2.3

In this section, find, store and plot the S21 data from just the AWS downlink band (2.11 to 2.17 GHz).

idx = (freq >= 2.11e9) & (freq <= 2.17e9);

s21 pass _data = s21 data(idx,:);

s21 pass db = s21 db(idx,:);

freq pass ghz = freq(idx)/1e9; % Normalize to GHz

plot(freq pass ghz,s21 pass_db)

xlabel('Frequency (GHz)');

ylabel('Filter Response (dB)');

title('Passband variation of 12 filters');
axis([min(freq _pass ghz) max(freq_pass ghz) -1 0]);
grid on;

7-85

7 RF Toolbox Examples

7-86

Passband variation of 12 filters
D T T T T T

Filter Response (d

2.1 212 213 214 215 216 217
Frequency (GHz)
Basic Statistical Analysis of the S21 Data

Perform Statistical analysis on the magnitude and phase of all passband S21 data sets. This
determines if the data follows a normal distribution and if there is outlier data.

abs S21 pass freq = abs(s21l pass data);
Calculate the mean and STD of the magnitude of the entire passband S21 data set.

mean_abs S21 = mean(abs_S21 pass freq, 'all')

mean_abs S21 = 0.9289

std abs S21

std(abs_S21 pass freq(:))
std abs S21 = 0.0104

Calculate the mean and STD of the passband magnitude response at each frequency point. This
determines if the data follows a normal distribution.

mean_abs S21 freq = mean(abs_S21 pass freq,2);
std abs S21 freq = std(abs_S21 pass freq,0,2);

Plot all the raw passband magnitude data as a function of frequency, as well as the upper and lower
limits defined by the basic statistical analysis.

plot(freq pass ghz,mean _abs S21 freq,'m')
hold on;

Data Analysis on S-parameters of RF Data Files

plot(freq pass ghz,mean _abs S21 freq + 2*std abs S21 freq, 'r"')
plot(freq pass ghz,mean _abs S21 freq - 2*std abs S21 freq, 'k')
legend('Mean', 'Mean + 2*STD', 'Mean - 2*STD');

plot(freq pass ghz,abs S21 pass freq,'c', 'HandleVisibility"', 'off")
grid on;

axis([min(freq_pass _ghz) max(freq pass ghz) 0.9 11);
ylabel('Magnitude S21');

xlabel('Frequency (GHz)');

title('S21 (Magnitude) - Statistical Analysis');

hold off;
521 (Magnitude) - Statistical Analysis
1 . : . . .
Mean
0.99 Mean + Z*STD |]
Mean - 2*STD
0.98r]
0.97T1]

0.96]

Magnitude S21
[’
[}
n

0.94 F .
,,—'—'—'_'_'_'___‘_‘—‘———.
0.93F — ———
,-o-'-"''_'_'_ -1
0.02 I -
.--"_'_'_'____' -
091" F_// B
0.9 — : : : : :
211 212 213 214 215 216 217

Frequency (GHz)

Plot a histogram for the passband magnitude data. This determines if the upper and lower limits of
the data follow a normal distribution.

histfit(abs S21 pass freq(:))

grid on;

axis([0.8 1 0 100]);

xlabel('Magnitude S21');

ylabel('Distribution');

title('Compare filter passband response vs. a normal distribution');

7-87

7 RF Toolbox Examples

7-88

Compare filter passband response vs. a normal distribution

100

80]

80]

o

60

50

Distribution

40 r

30 r

201

10

D 1 1 1 1
08 082 084 086 088 09 092 094 096 098 1

Magnitude S21

Calculate the phase response of the passband S21 data, then the per-frequency mean and standard
deviation of the phase response. All the passband S21 phase data is then collected into a single vector
for later analysis.

pha s21 = angle(s21 pass data)*180/pi;

mean_pha S21 = mean(pha_s21,2);

std pha S21 = std(pha s21,0,2);

all pha data = reshape(pha s21.',numel(pha s21),1);

Plot all the raw passband phase data as a function of frequency, as well as the upper and lower limits
defined by the basic statistical analysis.

plot(freq pass ghz,mean pha S21,'m")

hold on;

plot(freq pass ghz,mean pha S21 + 2*std pha S21,'r")
plot(freq pass ghz,mean pha S21 - 2*std pha S21,'k")
legend('Mean', 'Mean + 2*STD', 'Mean - 2*STD');

plot(freq pass ghz,pha s21,'c', 'HandleVisibility', 'off")
grid on;

axis([min(freq_pass _ghz) max(freq pass ghz) -180 1801]);
ylabel('Phase S21');

xlabel('Frequency (GHz)');

title('S21 (Phase) - Statistical Analysis');

hold off;

Data Analysis on S-parameters of RF Data Files

521 (Phase) - Statistical Analysis

180 1

100

50

Phase 521
[

-50

100 1

-150

Mean
Mean + 2Z*STD
Mean - 2*STD

211 212 213 214

Frequency (GHz)

2158

216

217

Plot a histogram for the passband phase data. This determines if the upper and lower limits of the

data follow a uniform distribution.

histogram(all pha data,35)
grid on;

xlim([-180 180]);
xlabel('Phase S21 (degrees)');
ylabel('Distribution');
title('Histogram of the filter

phase response');

7-89

7 RF Toolbox Examples

7-90

Histogram of the filter phase response

Distribution

-150 =100 =50 0 50 100 150
Phase S21 (degrees)

Analysis of Variance (ANOVA) of the S21 Data

Perform ANOVA on the magnitude of the passband S21 data.

anoval(abs S21 pass freq.',6freq pass ghz);

ANOVA Table
Source =35 df M= F Prob=F
Columns 0_00gze 120 o._oooo? n_&gl 0.9335
Error 0_1E501Z 1331 0.00011

Total 0.1l524 1451

ylabel('Magnitude S21')

xlabel('Frequency (GHz)"')

axl = gca;

ax1l.XTick = 0.5:10:120.5;

ax1l.XTickLabel = {2.11,'',2.12,'"',2.13,"'',2.14,"'"',2.15,"'"',2.16,"'"',2.17%};
title('Analysis of variance (ANOVA) of passband S21 magnitude response');
grid on;

Data Analysis on S-parameters of RF Data Files

Analysis of variance [ANDVA] of passhand 521 magnitude response

0.945 |munmu” AL

Iy
'Munlﬂnmunmnnmunmnum
|mnnmnumnn

g,

0.915 } |I |
I

| IIH I
L |I I (T I|I|I||
o lll IIIIIIIIIIIIIIIIIIIII||IIIII |||J ||||] IIIIIII|II|||II|III||I|I|II
III |||I||I|I|II|IIII|II|

J“ T
0.905 N'”muumnumu I m
||

Magnitude S21
S

0.9r

211 212 213 214 215 216 217
Frequency (GHz)

Perform ANOVA on the phase of the passband S21 data.

anoval(pha_s21.',freq_pass _ghz);

ANOVA Table
Source 55 df s F Prob=F
Colunns E0708ES. 12 lz0o EOEg7 .98 2096.8 u]
Error 7401.73 1331 E_E&

Total E0772E9 91 1451

ylabel('Phase S21 (degrees)')

xlabel('Frequency (GHz)")

ax2 = gca;

ax2.XTick = 0.5:10:120.5;

ax2.XTickLabel = {2.11,'',2.12,'',2.13,"'"',2.14,"'"',2.15,"'"',2.16,"'"',2.17};
title('Analysis of variance (ANOVA) of passband S21 phase response');
grid on;

7-91

7 RF Toolbox Examples

7-92

Analysis of variance (ANOVA) of passband $21 phase response

"
100 | mﬁiﬁim 1
ﬁiﬁﬂﬁ
ihh

—_ | ﬁ**iﬁ i
% 50 i‘hhui i
5 "o,
i} b,
=
5 or F, 1
43 -"i,_
[1b] Yoy
g '”h,
o L w”ﬁ |

-50 g

ﬁlﬂm
mﬁ"'ﬂ
-100 | ilm 1
i
211 212 213 214 215 216 217

Frequency (GHz)

Fit the Phase Data to 1st-Order Polynomial

Perform a curve fit of the S21 phase data using a linear regression model.

x = repmat(freq pass ghz,numfiles,1);
y = all _pha data;
phase s21 fit = fit(x,y, 'polyl")

phase s21 fit =
Linear model Polyl:
phase s21 fit(x) = pl*x + p2
Coefficients (with 95% confidence bounds):
pl -310.8 (-500.9, -120.6)
p2 665.3 (258.3, 1072)

Plot the linear regression model of the S21 phase data.

plot(phase s21 fit,x,y)

p = polyfit(x,y,1);

linear model = sprintf('y =
text(2.115,135,linear_model)
ylabel('Phase S21 (degrees)'
xlabel('Frequency (GHz)');
title('Fitted Curve of S21 Phase Data');

st x + %f',p(1),p(2));

);

Data Analysis on S-parameters of RF Data Files

Fhase 521 (degrees)

Fitted Curve of 521 Phase Data

150 T T
y = -310.765951 x + 665.314722 ~ data
- - - - - fitted curve
"IDD o - - - - - — —. i
5D -_ - L] -— - - - - - -— i
™ — [T] i _ -—
= — . - - ™ = S
— o e —— 1
-50 [B e B]
A00F = e — T - 1
__1 5D 1 1 1 1 1 1
2.1 212 213 214 215 2.16 217

Frequency (GHz)

218

7-93

7 RF Toolbox Examples

Writing S2P Touchstone® Files

This example shows how to write out the data in circuit objects you create in the MATLAB®
workspace into an industry-standard data file: Touchstone®. You can use these files in third-party
tools.

This simple example shows how to create and analyze an RLCG transmission line object. It then
shows how to write the analyzed result into a Touchstone file and compare the file data to the original
result.

Create an RF Circuit Object to Represent an RLCG Transmission Line

Create an tx1ineRLCGLine object to represent an RLCG transmission line using the transmission
line's parameters. This example uses Name-Value pairs to implement the parameters in the RLCG
transmission line shown in figure 1 [1].

R L
100 O/m 80 nH/m
0
G C
1.6 — 200
S/m pF/m
Or ‘ O

Figure 1: RLCG transmission line.

cktl = txlineRLCGLine('R"',100,'L"',80e-9,'C',200e-12,'G"',1.6);
Clone the Circuit Object

Use the clone function to make a copy of the first txline object.

ckt2

clone(cktl)

ckt2 =
tx1lineRLCGLine: RLCGLine element

Name: 'RLCGLine'
Frequency: 1.0000e+09
R: 100

L: 8.0000e-08

C: 2.0000e-10

G: 1.6000
IntpType: 'Linear!’

7-94

Writing S2P Touchstone® Files

LineLength: 0.0100
Termination: 'NotApplicable'’
StubMode: 'NotAStub'
NumPorts: 2
Terminals: {'pl+' 'p2+' ‘'pl-' 'p2-'}

Cascade Two Circuit Objects

Use the circuit object to cascade the two transmission lines together.

ckt = circuit([cktl,ckt2]);
Analyze the Cascade and Plot S-Parameter Data

Use the sparameters object to analyze the cascade in the frequency domain. Then, use the
smithplot method to plot the object's S11 on a Smith chart®.

freq = linspace(0,10€9);

ckt _sparameters = sparameters(ckt,freq);

figure

smithplot(ckt sparameters,[1,1], 'LegendLabels','S11 Original")

— 511 Original

7-95

7 RF Toolbox Examples

Write out the Data to an S2P File

Use the rfwrite function to write the data to a file.

workingdir = tempname;
mkdir(workingdir);
filename = fullfile(workingdir, '‘myrlcg.s2p');
if exist(filename, 'file')
delete(filename)
end
rfwrite(ckt sparameters,filename);

Compare the Data

Read the data from the file myrlcg.s2p into a new sparameters object and plot S11 on a Smith
chart. Visually compare this Smith chart to the previous one to see that the data matches.

compare ckt = sparameters(filename);
figure
smithplot(compare ckt,[1,1], 'LegendLabels','S11 from S2P"')

— 511 from S2P

7-96

Writing S2P Touchstone® Files

[1] M. Steer, "Transmission Lines," in Microwave and RF Design: Transmission Lines. vol. 2, 3rd ed.
Raleigh, North Carolina, US: North Carolina State University, 2019, ch. 2, sec. 2, pp.58.

7-97

7 RF Toolbox Examples

Visualizing Mixer Spurs

7-98

This example shows how to create an rfckt.mixer object and plot the mixer spurs of that object.

Mixers are non-linear devices used in RF systems. They are typically used to convert signals from one
frequency to another. In addition to the desired output frequency, mixers also produce
intermodulation products (also called mixer spurs), which are unwanted side effects of their
nonlinearity. The output of the mixer occurs at the frequencies:

Fout(N, M) = |NFin + MFLO|
where:

* Fj, is the input frequency.
* Fpois the local oscillator (LO) frequency.

* N is a nonnegative integer.
* M is an integer.

Only one of these output frequencies is the desired tone. For example, in a downconversion mixer (i.e.
Fin, = Frp) with a low-side LO (i.e. Fgrr > F), the case N = 1, M = — 1 represents the desired output

tone. That is:
Fou(1, = 1) = Fip = [NFin + MF10| = FrRr — FL0
All other combinations of N and M represent the spurious intermodulation products.

Intermodulation tables (IMTs) are often used in system-level modeling of mixers. This example first
examines the IMT of a mixer. Then the example reads an . s2d format file containing an IMT, and
plots the output power at each output frequency, including the desired signal and the unwanted
spurs. The example also creates a cascaded circuit which contains a mixer with IMT followed by a
filter, whose purpose is to mitigate the spurs, and plots the output power before and after mitigation.

For more information on IMTs, see the OpenlF example “Finding Free IF Bandwidths” on page 7-104.
Create a Mixer Object from a Data File

Create an rfckt.mixer object to represent the downconverting mixer that is specified in the file,
samplespurl.s2d. The mixer is characterized by S-parameters, spot noise and IMT. These data are
stored in the NetworkData, NoiseData and MixerSpurData properties of the rfckt object,
respectively.

Mixer = rfckt.mixer('FLO', 1.7e9); % Flo = 1.7GHz
read(Mixer, 'samplespurl.s2d');
disp(Mixer)

rfckt.mixer with properties:

MixerSpurData: [1x1 rfdata.mixerspur]
MixerType: 'Downconverter'
FLO: 1.7000e+09
FreqOffset: []
PhaseNoiselevel: []
NoiseData: [1x1 rfdata.noise]
NonlinearData: Inf

Visualizing Mixer Spurs

IntpType: 'Linear'
NetworkData: [1x1 rfdata.network]
nPort: 2
AnalyzedResult: [1x1 rfdata.data]
Name: 'Mixer'

IMT = Mixer.MixerSpurData.data
IMT = 16x16

99 26 35 39 50 41 53 49 51 42 62 51 60

73 73 74 70 71 64 69 64 69 62 74 62 72

Plot the Mixer Output Signal and Spurs

Use the plot method of the rfckt object to plot the power of the desired output signal and the

spurs. The second input argument must be the string 'MIXERSPUR'. The third input argument must

be the index of the circuit for which to plot output power data. The rfckt.mixer object only

contains one circuit (the mixer), so index 0 corresponds to the mixer input and index 1 corresponds to

the mixer output.

CktIndex = 1; % Plot the output only

Pin = -10; % Input power is -10dBm

Fin = 2.1e9; % Input frequency is 2.1GHz
figure

plot(Mixer, '"MIXERSPUR',CktIndex,Pin,Fin);

7-99

7 RF Toolbox Examples

2D T T
L - —# Signal
—& Spurs
0 » »
L] L
L L |
. -2'}' I' . .
& ' .
=, L J N
= ADH® o
:
o | I h
H0 ™ ‘ l 4 | N I ’
'||I-| l || l'i|
80 111, I i il ..
; ||||||||||| ||||||||"||||||||||' i I|| M |||||' e
-100 ' ' ' ' ' :
0 5 10 15 20 25 30 35
Freq [GHz]

Use the Data Cursor

Run the cursor over the plot to get the frequency and power level of each signal and spur.

7-100

Visualizing Mixer Spurs

20 T T T | T T
L = :FHF dJFLD :?E[GH] =y Signal
] Ak + =1, =z 1 :
I -2 0545 [dBm] 1] ® Spurs
|:|_ : ; -
Spur: FRF-3FLO| = 3 [SHz] - : E ;
-2.0545 [dBm] : : !
_ED-I.} I '"' ” '"' a
E | ® : 5
o : &
% _4|:|_.'l ; ; LT TR G e T | TSR v NRTRI ORI
[ak]
= :
o ; h . 5
s0lje | ‘ || | I ‘ 1) | —]
| “ ' ‘ ‘I ‘ "“ -
BD Il : A ' : i O o e
ol e ||||||||||' |||n|| I||i||| I|| I||) ||||| il TT
] 5 10 15 20 5 30 35
Frag [GHz]

Create a Cascade

Create an amplifier object for LNA, mixer, and LC Bandpass Tee objects. Then build the cascade
shown in the following figure:

LIMNA Mixer

Filter

| |

| |

| I
] |

| I

| |
- e

| |

| I

Circuit Index 0 Circuit Index 1 Clreuit Index 2 Circult Index 3

FirstCkt = rfckt.amplifier('NetworkData',
rfdata.network('Type','S"', 'Freq',2.1e9, 'Data',[0,0;10,0]),

'NoiseData',®, 'NonlinearData',Inf); % 20dB LNA
SecondCkt = copy(Mixer); % Mixer with IMT table
ThirdCkt = rfckt.lcbandpasstee('L',[97.21 3.66 97.21]*1.0e-9,
'C',[1.63 43.25 1.63]*1.0e-12); % LC Bandpass filter

CascadedCkt = rfckt.cascade('Ckts',{FirstCkt,SecondCkt,ThirdCkt});

7-101

7 RF Toolbox Examples

7-102

Plot the Output Signal and Spurs of the LC filter in a Cascade

Use the plot method of the rfckt object to plot the power of the desired output signal and the
spurs. The third input argument is 3, which directs the toolbox to plot the power at the output of the
third component of the cascade (the LC filter).

CktIndex = 3; Plot the output signal and spurs of the LC filter,
which is the 3rd circuit in the cascade

Pin = -30; Input power is -30dBm

Fin = 2.1e9; Input frequency is 2.1GHz

plot(CascadedCkt, '"MIXERSPUR',CktIndex,Pin,Fin)

o® o° o° o°

11 T T T T F T T T T
—& Signal
10.67T]
E 10t 1
sl
=
:
oL 95T]
9 - -
8.5 ' ! ! ! ! ! ! ' !
06 -0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
Freq [GHz]

Plot the Cascade Signal and Spurs in 3D

Use the plot method of the rfckt object with a third input argument of 'all’ to plot the input
power and the output power after each circuit component in the cascade. Circuit index 0 corresponds
to the input of the cascade. Circuit index 1 corresponds to the output of the LNA. Circuit index 2
corresponds to the output of the mixer, which was shown in the previous plot. Circuit index 3
corresponds to the output of the LC Bandpass Tee filter.

CktIndex = 'all’; Plot the input signal, the output signal, and the

spurs of the three circuits in the cascade: FirstCkt,

SecondCkt and ThirdCkt

Pin = -30; Input power is -30dBm

Fin = 2.1e9; Input frequency is 2.1GHz

plot(CascadedCkt, '"MIXERSPUR',CktIndex,Pin,Fin)
(

view([68.5 26])

0® o o° o° o°

Visualizing Mixer Spurs

—& Signal
s |—® Spus

20

Freq [GHz] 30 !
Stage of cascade

7-103

7 RF Toolbox Examples

Finding Free IF Bandwidths

7-104

This example shows how to select an Intermediate Frequency (IF) that is free from any
intermodulation distortion. First, you create an OpenIF object and specify whether you are designing
a transmitter or receiver. Second, you use the addMixer function to define the properties of each
mixer as well as the specific Radio Frequency (RF) it interacts with. Lastly, you view the results using
the functions report and show.

Background Knowledge (Mixer Spurs)

When converting from RF to IF (receiver) or from IF to RF (transmitter), a mixer is used.
Unfortunately, mixers are nonlinear and their outputs contain energy at unwanted frequencies (we
call these unwanted outputs "spurs"). The OpenIF tool helps you to select an IF which avoids having
these spurious mixer outputs interfere with the mixer output. The output of the mixer is
characterized by the following equation:

Fout(N, M) = |NFin + MFLOl
where:

* Fj, is the input frequency.
* Fjois the local oscillator (LO) frequency.

* N is a nonnegative integer.
* M is an integer.

Only one of these output frequencies is the desired tone. For example, in a downconversion mixer (i.e.
Fin, = Frp) with a low-side LO (i.e. Fgrr > F), the case N = 1, M = — 1 represents the desired output

tone. That is:
Fout(1, = 1) = Fig = [NFjy + MFpo| = Frr — F10

All other combinations of N and M represent the spurious intermodulation products. To characterize
these intermodulation products, an Intermodulation Table (IMT) is used.

Background Knowledge (Intermodulation Tables)

The IMT provides information on the amount of power generated at each intermodulation product
frequency. For accurate mixer spurs analysis results, the IMT should be built from simulated or
measured data at the desired input signal and local oscillator frequency and power conditions.
Extrapolation to other conditions will lead to inaccuracies.

Here is the IMT of a downconverting mixer with a low side LO, measured at Fj, = Frr = 2.1 GHz,
Pin = PRF = — 10 dBm, FLO = 1.7 GHz, and PLO =7 dBm.

! Element (N,M) gives power of |N*Fin+M*Flo| in dBc
! Top indices give M =

! Left-hand indices give N =

%9 1 2 3 4 5 6 7 8 910 11 12 13 14 15

99 26 35 39 50 41 53 49 51 42 62 51 60 47 77 50

24 0 35 13 40 24 45 28 49 33 53 42 60 47 63

73 73 74 70 71 64 69 64 69 62 74 62 72 60

67 64 69 50 77 47 74 44 74 47 75 44 70

86 90 86 88 88 85 86 85 90 85 85 85

AP WNREO
0° o° o° o° o°

Finding Free IF Bandwidths

5% 90 80 90 71 90 68 90 65 88 65 85
6% 90 90 90 90 90 90 90 90 90 90
7% 90 90 90 90 90 87 90 90 90

8% 99 95 99 95 99 95 99 95

9% 90 95 90 90 90 99 90

10% 99 99 99 99 99 99

11% 90 99 90 95 90

12% 99 99 99 99

13% 90 99 90

14% 99 99

15% 99

Notice that it is a convention in industry-standard IMTs to assume symmetry, namely:
Pout(N, M) = Poy(N, — M)

and RF Toolbox™ software follows this convention.

If the measurement reveals that in fact the mixer is asymmetric, i.e.:
Pout(N, M) # Poy(N, — M)

there is no way of accommodating this information in an industry-standard IMT. In this situation, the
most common convention is to build an approximate model by placing the value:

max(Pyy(N, M), Poye(N, — M))
at position N, M.

Thus industry-standard IMTs in general and RF Toolbox in particular will over-estimate the power of
one spur in each pair of asymmetric spurs.

In the IMT, a 0 always appears in the table at the position N = 1, M = 1, which represents both the
desired signal and its symmetric image pair. All other entries are specified in dBc below the power of
the mixer output at the desired frequency. (In the unlikely case of a spur being above the power of the
desired, it will appear as a negative number, the magnitude of which is the spur power in dBc above
the desired.)

For example, in the IMT above, at row N = 1, column M = 3, the IMT value is 13. RF Toolbox will
place a pair of symmetric IM products at:

FOut(ll 3) = Fin + 3FLO
Fout(1, = 3) = |Fin - 3FLO|

each with a power level of -13 dBc. The absolute power of a spur in dBm is calculated by subtracting
the IMT dBc value from the output power (also in dBm) of the desired tone.

By convention, the special value of 99 means the tone at that index is negligible.
For more information on intermodulation tables, see [1] on page 7-0
Design Requirements

Find a spur-free IF for a receiver. The receiver must be able to downconvert from three separate RF
bands to the same (shared) IF. To find an IF center frequency that is spur-free for all three RF bands,

7-105

7 RF Toolbox Examples

your requirements must specify the RF Center Frequency, the RF Bandwidth, and the IF Bandwidth
that goes with that particular RF:

% RF band 1

RFCF1 = 2400e6; % 2.4 GHz
RFBW1 = 200e6; % 200 MHz
IFBW1 = 20e6; % 20 MHz
% RF band 2

RFCF2 = 3700e6; % 3.7 GHz
RFBW2 = 250e6; % 250 MHz
IFBW2 = 20e6; % 20 MHz
% RF band 3

RFCF3 = 5400e6; % 5.4 GHz
RFBW3 = 250e6; % 250 MHz
IFBW3 = 50e6; % 50 MHz

Next we must have an IMT measured for each RF band. Assume you have tested and measured the
mixers you plan to use with the following results:

IMT1

Il
O
©
(o}
N
[
=
~

26;
11 0 29 29 63;
60 48 70 86 41;
90 89 74 68 87;
99 99 95 99 99];

IMT2

Il
O
o
=
o
=
N

15;
20 0 26 31 48;
55 70 51 70 53;
85 90 60 70 94;
96 95 94 93 92];

IMT3

Il
O
©o
N
=
=
=
o

16;
27 0 16 41 55;
25 61 66 65 47;
92 83 66 77 88;
97 94 91 92 99];

Find Spur-Free frequencies using the OpenlF object

Create the object using the OpenIF function. Specify you are designing a receiver by setting the
'IFLocation' property to 'MixerOutput'.

h = OpenIF('IFLocation', 'MixerOQutput');

Use the addMixer method to input the information for each RF band. Here low-side injection is
assumed for each mixer, but high-side injection could be tried later.

addMixer(h,IMT1, RFCF1, RFBW1, 'low', IFBW1);
addMixer(h,IMT2, RFCF2, RFBW2, 'low', IFBW2);
addMixer(h,IMT3, RFCF3, RFBW3, 'low', IFBW3);

View the results textually using the report method.

report(h);

7-106

Finding Free IF Bandwidths

Intermediate Frequency (IF) Planner

IF Location: MixerQutput

-- MIXER 1 --

RF Center Frequency: 2.4 GHz
RF Bandwidth: 200 MHz

IF Bandwidth: 20 MHz
MixerType: low
Intermodulation Table: 99

-- MIXER 2 --

RF Center Frequency: 3.7 GHz
RF Bandwidth: 250 MHz

IF Bandwidth: 20 MHz
MixerType: low
Intermodulation Table: 99

-- MIXER 3 --

RF Center Frequency: 5.4 GHz

RF Bandwidth: 250 MHz

IF Bandwidth: 50 MHz

MixerType: low

Intermodulation Table: 99
27
25
92
97

There are no spur-free zones.

The best attainable spur-free zone has a SpurFloor of 87.

View the results graphically using the show method.

figure;
show(h);

48
89

70
90

2
0
61
83
94

21
29
70
74
95

26
51
60
94

11
16
66
66
91

12
31
70
70
93

15
41
65
77
92

26
63
41
87
99

15
48
53
94
92

16
55
47
88
99

7-107

7 RF Toolbox Examples

7-108

OpenlF Spur Graph

0r— —
I ixer 1
107 I (e 2
= | Mixer 3
20 F]
I ——
_— — — —
5 301 —
=2
@40 e —
a
™ M —
& 50— -
g
-E 60 r — -
R —
¢ 70 —— S
—————
-80
e — .
90—
I
0 0.5 1 1.5 2
IF Center Frequencies (Hz) «10%

Interpreting the Graphical Results

The figure created by the show method displays all relevant spurious frequency ranges as colored
horizontal rectangles. If there any spur-free zones (there may not be) it will be displayed as vertical
green rectangle.

In this example, as we can see in the figure, there are no spur-free zones. The legend in the upper
right-hand corner tells us which color each Mixer is associated with. If we wish more detailed
information about a spurious region, we can click on one of the rectangles:

Finding Free IF Bandwidths

B Figure 1 | B e
File Edit View Insert Tools Desktop Window Help u
NEHdS [M RAODEL- S| 0E) e
[]_""""""""""""""'"'I"""""""'T """" _"I_ """""
. : E I 1ixcer 1
L e S I e 2
: : S5 [Mixer3
| SEEEEEEEEEEEETE mmmmm e EEREEEEEEEEEEEE T - - -
I ' I
=30 ----------------------E---JI---E ------ TR _:—---E
A0 - SREEEEEETRE —' ---------- -'_------;- ---------
, 5 e
T e -
------------------------------- T
—— !
__________ L —
Mixer 1
RF Center Freq = 2.4 GHz Tt
M=-3, N=2 !
Spur Level = 86 dBc :'r_l --------
Freq Range: 482.5 MHz - 717.5 MHz |
I I
1 15 2
x 10°

If we wish to find a spur-free zone, we will have to adjust some of the parameters of the setup.

Adjusting a Mixer Property to find Spur-Free Zones

In the current setup, there are no spur-free zones available. We will need to adjust some of the setup
parameters in order to find a spur-free zone. The values laid out in the design requirements (RF
Bandwidth, RF Center Frequency, and IF Bandwidth) cannot be changed. However, some parameters
(such as altering low- or high-side injection) are design decisions. We can see if changing the first
mixer to high-side injection will open up a spur-free zone:

h.Mixers(1l).MixingType = 'high';

figure;
show(h);

7-109

7 RF Toolbox Examples

OpenlF Spur Graph

0r— — —
I ixer 1
107 I (e 2
= | Mixer 3
=201
]

i
(%)
]

T

)
o
=2
2407
]
'E e R —
S50 ——
o 50 e [|
g
8 60
. —
A -70 E—— S
E—— E——
—
=80
— 0 1 —
90—
F*
0 0.5 1 1.5 2

IF Center Frequencies (Hz) %107

Adjusting the SpurFloor to find Spur-Free Zones

If we wish to use low-side injection in all of the mixers, we must find acceptable spur-free zones by
adjusting other parameters. Here we reset the OpenlIF object to all low-side injection, and re-plot the
results:

h.Mixers(1).MixingType = 'low';

figure;
show(h);

7-110

Finding Free IF Bandwidths

OpenlF Spur Graph

0r— —
I ixer 1
107 I (e 2
= | Mixer 3
20 F]
I ——
_— — — —
5 301 —
=2
@40 e —
a
™ M —
& 50— -
g
-E 60 r — -
R —
¢ 70 —— S
—————
-80
e — .
90—
I
0 0.5 1 1.5 2
IF Center Frequencies (Hz) «10%

We notice there is a section around 500 MHz where there is a opening all the way down to roughly
-85 dBc. We can find that zone by adjusting the SpurFloor property:

h.SpurFloor = 85;
show(h);

7-111

7 RF Toolbox Examples

OpenlF Spur Graph

00— -
I ixer 1
10t I (e 2
[Mixer 3
20+ ()
T) — (S
@ — h —
= a0t O
7]
=
&
'E =40 r e —
& o
2 -50 —————
o I -
=
a
w60
—]
— ——
—?D = | |
————
80T
0 0.5 1 1.5 2
IF Center Frequencies (Hz) «10%
References

[1] Daniel Faria, Lawrence Dunleavy, and Terje Svensen. "The Use of Intermodulation Tables for
Mixer Simulations," Microwave Journal, Vol. 45, No. 4, December 2002, p. 60.

7-112

De-Embedding S-Parameters

De-Embedding S-Parameters

This example shows you how to extract the S-parameters of a Device Under Test (DUT). First, read a
Touchstone® file into a sparameters object, calculate the S-parameters for the left and right pads,
de-embed the S-parameters using the deembedsparams function and then display the results.

This example will use the S-parameter data in the file samplebjt2.s2p that was collected from a
bipolar transistor in a fixture with a bond wire (series inductance 1 nH) connected to a bond pad
(shunt capacitance 100 fF) on the input, and a bond pad (shunt capacitance 100 fF) connected to a
bond wire (series inductance 1 nH) on the output, see Figure 1.

I nH 1 nH
gl gk
100 fF J— DUT $ 100 fF

1 |

Figure 1: Device under test (DUT) and the test fixture.

This example will show how to remove the effects of the fixture in order to extract the S-parameters
of the DUT.

Read the Measured S-Parameters

Create an sparameters object for the measured S-parameters, by reading the Touchstone® data file
samplebjt2.s2p.

S measuredBJT = sparameters('samplebjt2.s2p');
freq = S_measuredBJT.Frequencies;

Calculate S-Parameters for the Left Pad

Create a two port circuit object representing the left pad, containing a series inductor and shunt
capacitor. Then calculate the S-parameters using the frequencies from samplebjt2.s2p.

leftpad = circuit('left');
add(leftpad, [1 2],inductor(1le-9))
add(leftpad, [2 3],capacitor(1l00e-15))
setports(leftpad,[1 3],[2 31)

S leftpad = sparameters(leftpad, freq);

Calculate S-Parameters for the Right Pad

Create a two port circuit object representing the right pad, containing a series inductor and
shunt capacitor. Then calculate the S-parameters using the frequencies from samplebjt2.s2p.

rightpad = circuit('right"');
add(rightpad,[1 3],capacitor(100e-15))
add(rightpad,[1 2],inductor(le-9))
setports(rightpad,[1 3],[2 3])

S rightpad = sparameters(rightpad, freq);

De-Embed the S-Parameters

De-embed the S-parameters of the DUT from the measured S-parameters by removing the effects of
input and output pads (deembedsparams).

7-113

7 RF Toolbox Examples

S DUT = deembedsparams(S _measuredBJT,S leftpad,S rightpad);
Plot the Measured and De-Embedded S11 Parameters on a Z Smith® Chart

Use smithplot to plot the measured and de-embedded S11 parameters.

figure;

hs = smithplot(S _measuredBJ]T,1,1);

hold on

smithplot(S DUT,1,1);

hs.ColorOrder = [1 0 0; 0 0 1];

hs.LegendLabels = {'Measured S11', 'De-Embedded S11'};

Measured 511
De-Embedded S11

+1

Plot the Measured and De-Embedded S22 Parameters on a Z Smith Chart

Use smithplot to plor the measured and de-embedded S22 parameters.

hold off

smithplot(S measuredBJT,2,2);
hold on
smithplot (S _DUT,2,2)
hs = smithplot('gco’
hs.ColorOrder = [1 0 0; 0 0 1];

hs.LegendLabels = {'Measured S22', 'De-Embedded S22'};

’
’

Plot the Measured and De-Embedded S21 Parameters in Decibels

Use rfplot to plot the measured and de-embedded S21 parameters.

7-114

De-Embedding S-Parameters

hold off

hl = rfplot(S measuredBJT,2,1,'-r');

hold on

h2 = rfplot(S DUT,2,1);

legend([hl,h2],{'Measured S {21}', 'De-Embedded S {21}'})

7-115

7 RF Toolbox Examples

Bisect S-Parameters of Cascaded Probes

This example shows a how to separate the S-parameters of two identical, passive, symmetric probes
connected in a cascade.

Introduction

Consider a DUT (device under test) connected to two probes. In order to de-embed the S-parameters
of DUT, you need to know the S-parameters of each individual probe. For accurate S-parameters of
the two probes, the calibration is done in the lab using SOLT (short, open, load, and thru) or TRL
(thru, reflect, line) measurements. However, if you assume the probes are identical and symmetric,
then you can approximate S-parameters quickly using the procedure sketched here.

The file connectedprobes.s2p contains the S-parameter data when the probes are connected
directly to each other.

ABCD-parameters

This example uses ABCD-parameters to bisect measured S-parameter data into the data for each
individual probe.

When you cascade two networks, you can calculate the ABCD-parameters of the combined network
by matrix multiplying the ABCD-parameters of the two individual networks.

o——| L «—o o——— —o
(A B"| (A B]W {A.z Bz|
\C D) = LCI D, \Cz2 D)
o—— ————o o— ——————o
1 o 1 2°
measurement probel probe2
(A B) _ (A1 B1|(A2 B2
c D) \c; Dy)\C, Dy
A1 B1) (A2 By thenAB—AlBlz
"\C1 Dy - Cy Do) "\c)~ Cy Dy

7-116

From the above equation, you can find the ABCD-parameters of the two individual probes by taking
the matrix square root of the ABCD-parameters of main network.

Since both probes are identical, you can calculate the S-parameters of either one of the probes.
Extract Required S-Parameter Data from Given Touchstone file

Create an sparameters object from the Touchstone® data file connectedprobes.s2p.
filename = 'connectedprobes.s2p’;

S = sparameters(filename);

numports = S.NumPorts;
freq = S.Frequencies;

Bisect S-Parameters of Cascaded Probes

numfreq = numel(freq);
z0 = S.Impedance;

Calculate S-Parameter Data of Individual Probe

Create a zero matrix to store the ABCD-parameter data of the probe.

abcd probe data = zeros(numports,numports,numfreq);

To calculate S-Parameters of the probe, you need to know the S-parameters at every frequency it
operates. Convert the S-parameters extracted from connectedprobes.s2p to ABCD-parameters.
Then calculate the matrix square root of ABCD-parameters using sqrtm function to get the ABCD-
parameters of the probe. Convert these ABCD-parameters of the probe to S-parameters.
ABCD = abcdparameters(S);
for n = l:numfreq

abcd meas = ABCD.Parameters(:,:,n);

abcd probe data(:,:,n) = sqrtm(abcd meas);
end
ABCD probe = abcdparameters(abcd probe data,freq);

Create an S-parameter object from the calculated S-parameter data of the probe.
S probe = sparameters(ABCD probe, z0);

Compare Calculated S-Parameters with Expected S-Parameters

For this example, connectedprobes.s2p gives the S-Parameter data of this network.

AW W —— W\~
1 Ohm 2 0hm 1 Ohm
1 "1
measurement

Split the above network into two identical networks, probel and probe2. The S-parameters of these
probes represent the expected result.

10hm 10hm 10hm
1F

12hm
1F

Probe1 Probe2

Create probel using circuit, resistor, and capacitor objects from the RF Toolbox.

7-117

7 RF Toolbox Examples

R1 = 1;
Cl =1;
R2 = 1;

ckt = circuit('probel');

add(ckt,[1 2],resistor(R1))
add(ckt,[2 4],capacitor(Cl))
add(ckt,[2 3],resistor(R2))

Calculate the expected S-parameters of probe 1.

setports(ckt,[1 4],[3 41)
S exp = sparameters(ckt,freq,z0);

Plot and compare the expected S-parameters from probel and those calculated using ABCD-
parameters and compare.

rfplot(S_exp)

hold on

rfplot(S_probe,'--")

hold off

text(0.02,-5,{'Solid: Expected', 'Dashed: Computed'})

0 : ; ; : :
-
. dB(s,,)
-5 gjsld:ad%gfﬁa\duted RGUR
: dB(S.,)
"
-

o g dB(S,,)| |
_ H“HH — — —dB(S,,)
m ™
o A5 e N dB(S,,) |
P ——__ |———dB(S,)

o -

2 — _dB[SZE}‘
o -20

=

25 i

-30 1

-35 : : ' ' '

0 10 20 30 40 50 60

Frequency (mHz)

Compare Cascaded S-Parameters of probel with S-Parameters of Combined Network
Cascade s-parameters of probel with itself using cascadesparams function.

Create an S-parameter object with cascaded S-parameters.

7-118

Bisect S-Parameters of Cascaded Probes

S combined = cascadesparams(S_probe,S probe);

Plot and compare S-parameters from connectedprobes.s2p and those calculated from combined
probel.

figure

rfplot(S)

hold on

rfplot(S _combined,'--")

hold off

text(0.02,-5,{'Solid: Expected', 'Dashed: Computed'})

dB(S,)
dB(S,,)
dB(S,,)
dB(S,,)
— — —dB(S,,)|

dB(S,,)
— — —dB(S,,)
— — —dB(S,,)

Magnitude (dB)

230
0 10 20 30 40 50 60

Frequency (mHz)

Limitations

The procedure shown here cannot replace traditional calibration. We include it as an example of
using RF Toolbox™ and MATLAB™ to manipulate network parameters mathematically.

There are some limitations to using this procedure.

* There is no guaranteed solution. Some matrices do not have a square root.
* The solution may not be unique. Often, there are two or more viable matrix square roots.

7-119

7 RF Toolbox Examples

Designing Matching Networks for Low Noise Amplifiers

7-120

This example shows how to verify the design of input and output matching networks for a Low Noise
Amplifier (LNA) by plotting its gain and noise.

In wireless communications, receivers need to be able to detect and amplify incoming low-power
signals without adding much noise. Therefore, a LNA is often used as the first stage of these
receivers. To design an LNA, this example uses the available gain design technique, which involves
selecting an appropriate matching network that provides a suitable compromise between gain and
noise.

In this example, to design matching networks for an LNA, the rfckt.amplifier object and the
analyze method are used to examine the transducer power gains, the available power gain, and the
maximum available power gain. The method circle is used to determine optimal source reflection
coiefficent, Gamma$ and the function fzero is used in amplifier stabilization.

LNA Design Specifications
The LNA design specifications are as follows:

* Frequency range: 5.10 - 5.30 GHz

* Noise Figure <= 2.2 dB

* Transducer Gain > 11 dB

* Operating between 50-ohm terminations

Create an rfckt.amplifier Object and Examine the Amplifier Power Gains and Noise
Figure

Create an rfckt.amplifier object to represent the amplifier that is specified in the file,
'samplelnal.s2p'. analyze the amplifier in the frequency range from 2 GHz to 10 GHz. plot the
transducer power gain (Gt), the available power gain (Ga) and the maximum available power gain
(Gmag).

unmatched amp = read(rfckt.amplifier, 'samplelnal.s2p');
analyze(unmatched amp, 2e9:50e6:10e9);

figure

plot(unmatched amp, 'Gmag', 'Ga', 'Gt','dB")

Designing Matching Networks for Low Noise Amplifiers

:'H} T T T T T T T

25

[
=

Magnitude (decibels)
= &

Freq [GHz]

Examine the power gains at 5.2 GHz in order to design the input and output matching networks 5.2
GHz. Without the input and output matching networks, the transducer power gain at 5.2 GHz is about
7.2 dB; it is below the gain requirement of 11 dB in the specification and less than the available
power gain. This amplifier is also potentially unstable at 5.2 GHz, because the maximum available
gain does not exist at 5.2 GHz.

Plot the measured minimum noise figure (Fmin) and the noise figure (NF) calculated when there is no
input matching network. Specify an x-axis range of 4.9 GHz to 6 GHz, where the minimum noise
figure is measured.

plot(unmatched amp, 'Fmin', 'NF','dB")

axis([4.9 6 1.5 4])
legend('Location', 'NorthWest"')

7-121

7 RF Toolbox Examples

7-122

2587]

Magnitude (decibels)

‘15 1 1 1 1 1 1 1 1 1 1
4.9 5 61 bH2 5H3 b4 bHSEH BHBE BT bE bHI

Freq [GHz]

When there is no input matching network, the noise figure between 5.10 and 5.30 GHz is above the
noise figure requirement of 2.2 dB in the specification.

Plot Gain, Noise Figure and Stability Circles

Both the available gain and the noise figure are functions of the source reflection coefficient,
GammasS. To select an appropriate Gammas that provides a suitable compromise between gain and
noise, use the circle method of the rfckt.amplifier object to place the constant available gain
and the constant noise figure circles on the Smith chart. As mentioned earlier, the amplifier is
potentially unstable at 5.2 GHz. So, the following circle command also places the input and output
stability circles on the Smith chart.

fc = 5.2e9;

hsm = smithplot;

circle(unmatched amp, fc,'Stab','In','Stab','Out','Ga',10:2:20,
'NF',1.8:0.2:3,hsm);

legend('Location', 'SouthEast')

Designing Matching Networks for Low Noise Amplifiers

Input Stability(Freg=5.2[GHz])
Cutput Stability(F req=5.2[GHz]}
Available Gain(Freq=5.2[GHz])
Maoise Figure{Freq=5.2[GHz]}

Enable the data cursor and click on the constant available gain circle. The data tip displays the
following data:

* Available power gain (Ga)

* Noise figure (NF)

* Source reflection coefficient (GammaS)

* Output reflection coefficient (GammaOut)

* Normalized source impedance (ZS)

Ga, NF, GammaOut and ZS are all functions of the source reflection coefficient, GammaS. Gammas is the
complex number that corresponds to the location of the data cursor. A star (*') and a circle-in-dashed-
line will also appear on the Smith chart. The star represents the matching load reflection coefficient
(Gammal) that is the complex conjugate of GammaOut. The gain is maximized when Gammal is the
complex conjugate of GammaOut. The circle-in-dashed-line represents the trajectory of the matching
Gammal when the data cursor moves on a constant available gain or noise figure circle.

7-123

7 RF Toolbox Examples

7-124

+i5.0
Ga = 18.00 [dB]
NF = 1.85 [dB]
Gammas = [0.5485, 150.8 [deq] =
GammaOut = [0.8243), -117.8 [deqg]
Z5 =0.309 + j0.237
0.2 5.0

Input Stability(Freq=5.2[GHz])
Qutput Stahility(Freq=5_2[GHz])
Available Gain(Freq=5.2[GHz])
Moise Figure(Freq=5.2[GHz])

j0.5

Because both the S11 and S22 parameters of the amplifier are less than unity in magnitude, both the
input and output stable region contain the center of the Smith chart. In order to make the amplifier
stable, Gamma$S must be in the input stable region and the matching GammalL must be in the output
stable region. The output stable region is shaded in the above figure. However, when a Gamma$ that
gives a suitable compromise between gain and noise is found, the matching GammalL always falls
outside the output stable region. So we must stabilize the amplifier first.

Stabilize the Amplifier

One way to stabilize an amplifier is to cascade a shunt resistor at the output of the amplifier.
However, this approach will also reduce gain and add noise. At the end of the example, we will verify
that the overall gain and noise still meet the requirement.

To find the maximum shunt resistor value that makes the amplifier unconditionally stable, use the
fzero function to find the resistor value that makes stability MU equal to 1. The fzero function
always tries to achieve a value of zero for the objective function, so the objective function should
return MU- 1.

type('lna match stabilization helper.m')

function mu _minus 1 = lna match stabilization helper(propval, fc, ckt, element, propname)
%SLNA MATCH STABILIZATION HELPER Return Stability MU-1.

MU MINUS 1 = LNA MATCH STABILIZATION HELPER(PROPVALUE, FC, CKT,

ELEMENT, PROPNAME) returns stability parameter MU-1 of a circuit, CKT

when the property called PROPNAME of an element, ELEMENT is set to

PROPVAL.

o® o of o° o°

Designing Matching Networks for Low Noise Amplifiers

LNA MATCH STABILIZATION HELPER is a helper function of RF
Toolbox demo: Designing Matching Networks (Part 1: Networks with an LNA
and Lumped Elements).

o® o° of

o°

Copyright 2007-2008 The MathWorks, Inc.

set(element, propname, propval)
analyze(ckt, fc);
mu_minus 1 = stabilitymu(ckt.AnalyzedResult.S Parameters) - 1;

Compute the parameters for the objective function and pass the objective function to fzero to get
the maximum shunt resistor value.

stab_amp = rfckt.cascade('ckts', {unmatched amp, rfckt.shuntrlc});
Rl = fzero(@(R1) lna match stabilization helper(R1,fc,stab amp,stab _amp.Ckts{2},'R'),[1 1le5])

R1 = 118.6213
Find Gamma$S and Gammal

Cascade a 118-ohm resistor at the output of the amplifier and analyze the cascade. Place the new
constant available gain and the constant noise figure circles on the Smith chart.

shunt r = rfckt.shuntrlc('R',118);

stab_amp = rfckt.cascade('ckts',{unmatched amp,shunt r});
analyze(stab_amp, fc);

hsm = smithplot;
circle(stab_amp,fc,'Ga',10:17,'NF',1.80:0.2:3,hsm)
legend('Location', 'SouthEast"')

Use the data cursor to locate a Gamma$S where there is a suitable compromise between gain and
noise. The example selects a Gamma$ that gives gain of 14 dB and noise figure of 1.84 dB. Compute
the matching Gammal, which is the complex conjugate of GammaOut on the data tip.

7-125

7 RF Toolbox Examples

+0.240 +5.0
Ga = 14.00 [dB]
WF = 1.84 [dB]
GammaS = [0.6700], 153.8 [deg] e
GammaOut = |0.7363], -120.1 [deg]
Z5 = 0208 + j0.225

0.2 5.0

Awailable Gain(Freq=5.2[GHz])
Moise Figure(Freq=5.2[GHz])

GammaS = 0.67*exp(1j*153.6*pi/180)
GammaS = -0.6001 + 0.2979i
Compute the normalized source impedance.

Zs

gamma2z (GammaSs, 1)

Zs 0.2080 + 0.22491

Compute the matching Gammal that is equal to the complex conjugate of GammaOut.

GammaL = 0.7363*exp(1j*120.1*pi/180)

GammalL -0.3693 + 0.63701

Compute the normalized load impedance.
Z1 = gamma2z(Gammal,1)

Z1 0.2008 + 0.55861

Design the Input Matching Network Using Gamma$s

In this example, the lumped LC elements are used to build the input and output matching networks as
follows:

7-126

Designing Matching Networks for Low Noise Amplifiers

' | ! : : |
' Lin | | ' Lout |
BTN I | '
'i . i l/ . : !
! | | | : |
Term1 : i : : = : | B : Term?2
=71 : | | [: ! £=10
1 I I | . | Ly
o 1 1) I l.) - :)
Input Matching Output Matching
Network Network
s Cin Cout rL

The input matching network consists of one shunt capacitor, Cin, and one series inductor, Lin. Use
the Smith chart and the data cursor to find component values. To do this, start by plotting the

constant conductance circle that crosses the center of the Smith chart and the constant resistance
circle that crosses Gammas.

hsm = smithplot;

circle(stab_amp,fc,'G',1,'R',real(Zs),hsm);

hsm.GridType = 'YZ';

hold all

plot(Gamma$S, 'k."', 'MarkerSize',16)

text(real (GammaS)+0.05,imag(GammasS) -0.05, '\Gamma_ {S}', 'FontSize', 12,
'"FontUnits', 'normalized"')

plot(0,0,'k."', 'MarkerSize',16)

hold off

Then, find the intersection points of the constant conductance and the constant resistance circle.

Based on the circuit diagram above, the intersection point in the lower half of the Smith chart should
be used. Mark it as point A.

7-127

7 RF Toolbox Examples

0.0

Gamma = [0.6933], -134.3 [deq]
Z=0208-j).408
Y = 1.001 +j1.952

GammaA = 0.6983*exp(1lj*(-134.3)*pi/180);
Za gamma2z (GammaA,1l);
Ya 1/Za;

Determine the value of Cin from the difference in susceptance from the center of the Smith chart to
point A. Namely,

Yq

2nfCip = Im 50

where 50 is the reference impedance.

Cin = imag(Ya)/50/2/pi/fc

Cin = 1.1945e-12

Determine the value of Lin from the difference in reactance from point A to GammaS. Namely,
20fcLip = 50(Im(Zs) — Im(Z,))

Lin = (imag(Zs) - imag(Za))*50/2/pi/fc

Lin 9.6522e-10

Design the Output Matching Network Using GammalL

Use the approach described in the previous section on designing the input matching network to
design the output matching network and get the values of Cout and Lout.

7-128

Designing Matching Networks for Low Noise Amplifiers

GammaB = 0.7055*exp(1lj*(-134.9)*pi/180);
Zb = gamma2z(GammaB, 1);

Yb = 1/Zb;

Cout = imag(Yb)/50/2/pi/fc

Cout 1.2194e-12

Lout = (imag(Zl) - imag(Zb))*50/2/pi/fc
Lout = 1.4682e-09

Verify the Design

Create the input and output matching networks. Cascade the input matching network, the amplifier,
the shunt resistor and the output matching network to build the LNA.

input match = rfckt.cascade('Ckts"',
{rfckt.shuntrlc('C',Cin),rfckt.seriesrlc('L',Lin)});

output match = rfckt.cascade('Ckts', ..
{rfckt.seriesrlc('L',Lout),rfckt.shuntric('C',Cout)});

LNA = rfckt.cascade('ckts',
{input_match,unmatched amp,shunt r,output match});

Analyze the LNA around the design frequency range and plot the available and transducer power
gain. The available and transducer power gain at 5.2 GHz are both 14 dB as the design intended. The
transducer power gain is above 11 dB in the design frequency range, which meets the requirement in
the specification.

analyze(LNA,5.05e9:10e6:5.35€9);
plot(LNA, 'Ga','Gt"','dB");

Plot the noise figure around the design frequency range. The noise figure is below 2.2 dB in the
design frequency range, which also meets the requirement in the specification. The noise figure of
the LNA at 5.2 GHz is about 0.1 dB above that of the amplifier (1.84 dB), which demonstrates added
noise by the shunt resistor.

plot(LNA, 'NF','dB")

The available gain design method is often used in LNA matching. There are other design methods for
other devices. In the second part of the example -- “Designing Matching Networks (Part 2: Single
Stub Transmission Lines)” on page 7-130, a simultaneous conjugate matching example is presented.

7-129

7 RF Toolbox Examples

Designing Matching Networks (Part 2: Single Stub
Transmission Lines)

7-130

This example shows how to use the RF Toolbox to determine the input and output matching networks
that maximize power delivered to a 50-Ohm load and system. Designing input and output matching
networks is an important part of amplifier design. This example first calculates the reflection factors
for simultaneous conjugate match and then determines the placement of a shunt stub in each
matching network at a specified frequency. Finally, the example cascades the matching networks with
the amplifier and plots the results.

Create an rfckt.amplifier Object

Create an rfckt.amplifier object to represent the amplifier described by the measured frequency-
dependent S-parameter data in the file samplebjt2.s2p. Then, extract the frequency-dependent
S-parameter data from the rfckt.amplifier object.

amp = read(rfckt.amplifier, 'samplebjt2.s2p');
[sparams,AllFreq] = extract(amp.AnalyzedResult,'S Parameters');

Check for Amplifier Stability

Before proceeding with the design, determine the measured frequencies at which the amplifier is
unconditionally stable. Use the stabilitymu function to calculate mu and muprime at each
frequency. Then, check that the returned values for mu are greater than one. This criteria is a
necessary and sufficient condition for unconditional stability. If the amplifier is not unconditionally
stable, print out the corresponding frequency value.

[mu,muprime] = stabilitymu(sparams);
figure
plot(AllFreq/1e9,mu, '--',AllFreq/1e9,muprime, 'r")

legend('MU',"MU"", 'Location', 'Best"')
title("Stability Parameters MU and MU'")
xlabel('Frequency [GHz]"')

Designing Matching Networks (Part 2: Single Stub Transmission Lines)

Stability Parameters MU and MU'

1.6 T T

Dg 1 1 1 1 1 1 1 1 1
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 G

Frequency [GHz]
disp('Measured Frequencies where the amplifier is not unconditionally stable:')
Measured Frequencies where the amplifier is not unconditionally stable:
fprintf('\tFrequency = %.le\n',AllFreq(mu<=1))

1.0e+09
1.1e+09

Frequency
Frequency

For this example, the amplifier is unconditionally stable at all measured frequencies except 1.0 GHz
and 1.1 GHz.

Determine the Source and Load Matching Networks for a Simultaneous Conjugate Match

Begin designing the input and output matching networks by transforming the reflection coefficients
for simultaneous conjugate match at the amplifier interfaces into the appropriate source and load
admittance. This example uses the following lossless transmission line matching scheme:

7-131

7 RF Toolbox Examples

| ; : : |
I | | | :
i Tl i , D : : TL3 |
| | I ' |
! | | | : |
Term : 11 : : : | : Term?2
i . | | l | Z=20
i Open : : : | :
s | | i =
B sivcnc vt | 1 I | — |
Input Matching Output Matching
Network Network

s rin Cout I3k

The design parameters for this single stub matching scheme are the location of the stubs with
reference to the amplifier interfaces and the stub lengths. The procedure uses the following design
principles:

* The center of the Smith chart represents a normalized source or load immittance.

* Movement along a transmission line is equivalent to traversing a circle centered at the origin of
the Smith chart with radius equal to a reflection coefficient magnitude.

* A single transmission line stub can be inserted at the point on a transmission line when its
admittance (transmission line) intersects the unity conductance circle. At this location, the stub
will negate the transmission line susceptance, resulting in a conductance that equals the load or
source terminations.

This example uses the YZ Smith chart because it's easier to add a stub in parallel with a transmission
line using this type of Smith chart.

Calculate and Plot the Complex Load and Source Reflection Coefficients

calculate and plot all complex load and source reflection coefficients for simultaneous conjugate
match at all measured frequency data points that are unconditionally stable. These reflection
coefficients are measured at the amplifier interfaces.

AllGammaL = calculate(amp, 'GammaML', 'none');
AllGammaS = calculate(amp, 'GammaMS', 'none');
hsm = smithplot([AllGammaL{:} AllGammaS{:}]);
hsm.LegendLabels = {'#Gamma ML', '#Gamma MS'};

7-132

Designing Matching Networks (Part 2: Single Stub Transmission Lines)

ML
s

+j‘|

Determine the Load Reflection Coefficient at a Single Frequency

Find the load reflection coefficient, Gammal, for the output matching network at the design frequency
1.9 GHz.

freq

= AllFreq(AllFreq == 1.9e9);
GammalL =

AllGammalL{1} (AllFreq == 1.9e€9)
GammaL = -0.0421 + 0.2931i

Draw the Constant Magnitude Circle for Load Reflection Coefficient GammalL

Draw a circle that is centered at the normalized admittance Smith chart origin and whose radius
equals the magnitude of GammaL. A point on this circle represents the reflection coefficient at a
particular location on the transmission line. The reflection coefficient for the transmission line at the
amplifier interface is Gammal, while the center of the chart represents the normalized load
admittance, y L. The example uses the circle method to draw all appropriate circles on a Smith
chart.

hsm = smithplot;

circle(amp, freq, 'Gamma',abs(GammalL),bhsm);

hsm.GridType = 'yz';

hold all

plot(0,0, 'k."', 'MarkerSize',16)

plot(GammalL, 'k."', 'MarkerSize',16)

txtstr = sprintf('\\Gamma {L}\\fontsize{8}\\bf=\\mid%s\\mid%s~\\circ',
num2str(abs(GammalL),4),num2str((angle(GammaL)*180/pi),4));

7-133

7 RF Toolbox Examples

7-134

text(real(GammalL),imag(GammaL)+.1,txtstr, 'FontSize',10,
'"FontUnits', 'normalized');

plot(0,0,'r',0,0,'k.", 'LineWidth',2, '"MarkerSize',16);

text(0.05,0,'y L', 'FontSize',12, 'FontUnits', 'normalized")

Draw the Unity Constant Conductance Circle and Find Intersection Points

To determine the stub wavelength (susceptance) and its location with respect to the amplifier load
matching interface, plot the normalized unity conductance circle and the constant magnitude circle
and figure out where the two circles intersect. Find the points of intersection interactively using the
data cursor or analytically using the helper function, find circle intersections helper. This
example uses the helper function. The circles intersect at two points. The example uses the third-
quadrant point, which is labeled "A". The unity conductance circle is centered at (-.5,0) with radius .5.
The constant magnitude circle is centered at (0,0) with radius equal to the magnitude of GammalL.

circle(amp,freq, 'G',1,hsm);
hsm.ColorOrder(2,:) = [1 0 0];
[~,pt2] = imped match find circle intersections_helper ([0 0],

abs(GammalL),[-.5 0]1,.5);

GammaMagA = sqrt(pt2(1)"2 + pt2(2)"2);

GammaAngA = atan2(pt2(2),pt2(1));

ax = hsm.Parent.CurrentAxes;

hold (ax,"on");

plot(ax, pt2(1),pt2(2),'k."', 'MarkerSize',16);

txtstr = sprintf('A=\\mid%s\\mid%s™\\circ',num2str(GammaMagA,4),
num2str(GammaAngA*180/pi,4));

text(ax, pt2(1),pt2(2)-.07,txtstr, 'FontSize',8, 'FontUnits', 'normalized’,

'FontWeight', 'Bold"')
container = hsm.Parent;
annotation(container, 'textbox', 'VerticalAlignment', 'middle’, ...

'String',{'Unity"', 'Conductance', 'Circle'}, ...

'HorizontalAlignment', 'center', 'FontSize',8, ...

'"EdgeColor',[0.04314 0.5176 0.7804], ...

'BackgroundColor',[1 1 1], 'Position',[0.1403 0.1608 0.1472 0.13961])
annotation(container, 'arrow',[0.2786 0.3286],[0.2778 0.3310])
annotation(container, 'textbox', 'VerticalAlignment', 'middle’, ...

'String',{'Constant', 'Magnitude', 'Circle'}, ...

'HorizontalAlignment', 'center', 'FontSize',8,...

'"EdgeColor',[0.04314 0.5176 0.78041], ...

'BackgroundColor',[1 1 1], 'Position',[0.8107 0.3355 0.1286 0.1454])
annotation(container, 'arrow',[0.8179 0.5761],[0.4301 0.4887]);

Calculate the Stub Location and the Stub Length for the Output Matching Network

The open-circuit stub location in wavelengths from the amplifier load interface is a function of the
clockwise angular difference between point "A" and GammaL. When point "A" appears in the third
quadrant and Gammal falls in the second quadrant, the stub position in wavelengths is calculated as
follows:

StubPositionOut ((2*pi + GammaAngA) - angle(Gammal))/(4*pi)

StubPositionOut = 0.2147

The stub value is the amount of susceptance that is required to move the normalized load admittance
(the center of the Smith chart) to point "A" on the constant magnitude circle. An open stub
transmission line can be used to supply this value of susceptance. Its wavelength is defined by the
amount of angular rotation from the open-circuit admittance point on the Smith chart (point "M" on

Designing Matching Networks (Part 2: Single Stub Transmission Lines)

the following figure) to the required susceptance point "N" on the outer edge of the chart. Point "N" is
where a constant susceptance circle with a value equal to the susceptance of point "A" intersects the
unit circle. In addition, the StubLengthOut formula used below requires "N" to fall in the third or
fourth quadrant.

+0.2

Gamma = |1.0003], -63.6 [deg]
Z=-0000-j1 613
N o= -0.000 +j0E20

+jzu m HO5

+1.0

GammaA = GammaMagA*exp (1lj*GammaAngA);
bA = imag((1 - GammaA)/(1l + GammaA));
StubLengthQut = -atan2(-2*bA/(1 + bA™2),(1 - bA™2)/(1 + bA™2))/(4*pi)

StubLengthOut = 0.0883

Calculate the Stub Location and the Stub Length for the Input Matching Network

In the previous sections, the example calculated the required lengths and placements, in
wavelengths, for the output matching transmission network. Following the same approach, the line
lengths for the input matching network are calculated:

Gamma$s AllGammaS{1} (AllFreq == 1.9€9)

GammaS = -0.0099 + 0.2501i1

[ptl,pt2] = imped match find circle intersections helper([0 0],
abs(GammaS),[-.5 0],.5);

GammaMagA = sqrt(pt2(1)"2 + pt2(2)"2);

GammaAngA = atan2(pt2(2),pt2(1));

GammaA = GammaMagA*exp(1j*GammaAngA) ;

bA = imag((1l - GammaA)/(1l + GammaA));

StubPositionIn = ((2*pi + GammaAngA) - angle(GammaS))/(4*pi)

7-135

7 RF Toolbox Examples

7-136

StubPositionIn = 0.2267
StubLengthIn = -atan2(-2*bA/(1 + bA"2),(1 - bA*2)/(1 + bA"2))/(4*pi)
StubLengthIn = 0.0759

Verify the Design

To verify the design, assemble a circuit using 50-Ohm microstrip transmission lines for the matching
networks. First, determine if the microstrip line is a suitable choice by analyzing the default
microstrip transmission line at a design frequency of 1.9 GHz.

stubTL4 = rfckt.microstrip;
analyze(stubTL4,freq);
Z0 = stubTL4.Z0;

This characteristic impedance is close to the desired 50-Ohm impedance, so the example can proceed
with the design using these microstrip lines.

To calculate the required transmission line lengths in meters for the placement of the stubs, analyze
the microstrip to obtain a phase velocity value.

phase vel = stubTL4.PV;

Use the phase velocity value, which determines the transmission line wavelength and the stub
location to set the appropriate transmission line lengths for the two microstrip transmission lines,
TL2 and TL3.

TL2
TL3

rfckt.microstrip('LineLength',phase vel/freq*StubPositionIn);
rfckt.microstrip('LineLength',phase vel/freq*StubPositionOQut);

Use the phase velocity again to specify stub length and stub mode for each stub.

stubTL1l = rfckt.microstrip('LineLength',phase _vel/freq*StubLengthIn,
'StubMode', 'shunt', 'Termination', 'open');

set(stubTL4, 'LinelLength',phase_vel/freg*StubLengthOut,
'StubMode', 'shunt', 'Termination', 'open')

Now cascade the circuit elements and analyze the amplifier with and without the matching networks
over the frequency range of 1.5 to 2.3 GHz.

matched amp = rfckt.cascade('Ckts',{stubTL1,TL2,amp,TL3,stubTL4});
analyze(matched amp,1.5e9:1e7:2.3e9);
analyze(amp,1.5e9:1e7:2.3e9);

To verify the simultaneous conjugate match at the input of the amplifier, plot the S11 parameters in
dB for both the matched and unmatched circuits.

clf

plot(amp, 'S11',"'dB")

hold all

hline = plot(matched amp, 'S11','dB");
hline.Color = 'r';

legend('S {11} - Original Amplifier', 'S {11} - Matched Amplifier")
legend('Location', 'SouthEast"')
hold off

To verify the simultaneous conjugate match at the output of the amplifier, plot the S22 parameters in
dB for both the matched and unmatched circuits.

Designing Matching Networks (Part 2: Single Stub Transmission Lines)

plot(amp, 'S22',"'dB")

hold all
hline = plot(matched amp, 'S22','dB"');
hline.Color = 'r';

legend('S {22} - Original Amplifier', 'S {22} - Matched Amplifier")
legend('Location', 'SouthEast"')
hold off

Finally, plot the transducer gain (Gt) and the maximum available gain (Gmag) in dB for the matched
circuit.

hlines = plot(matched amp, 'Gt', 'Gmag', 'dB');
hlines(2).Color = 'r';

You can see that the transducer gain and the maximum available gain are very close to each other at
1.9 GHz.

7-137

7 RF Toolbox Examples

Designing Broadband Matching Networks for Antennas

7-138

This example shows how to design a broadband matching network between a resistive source and
inductive load using optimization with direct search methods.

In any system that uses RF circuits, a matching network is necessary to transfer the maximum
amount of power between a source and a load. In most systems, such as wireless devices, there is a
bandwidth of operation specified. As a result the purpose of the matching network is to provide
maximum power transfer over a range of frequencies. While the L section matching approach
(conjugate match), guarantees maximum power transfer, it does so only at a single frequency.

Antenna

™

MATCHING =
SOURCE |—-~ NETWORK -
Input reflection Load reflection —
coafficiant coeffaciant

Figure 1: Impedance matching of an antenna to a source

To design a broadband matching network, first set the design parameters such as center frequency,
bandwidth, and impedances of source, load and reference. Then calculate the load reflection
coefficient and power gain to determine the frequency at which the matching network of the antenna
must operate and once the design is complete, optimize the derived network.

Specify Frequency and Impedance

You are building a matching network with a bandpass response, so specify the center frequency and
the bandwidth of match.

fc
BwW

350e6;
110e6;

Center Frequency (Hz)
Bandwidth (Hz)

%
%

Here you specify the source impedance, the reference impedance and the load resistance. In this
example the load Z1 is modeled as a series R-L circuit. Instead of calculating the load impedance, you
could measure the impedance of the load.

Zs = 50; % Source impedance (ohm)
Z0 = 50; % Reference impedance (ohm)
Rl = 40; % Load resistance (ohm)

L = 12e-8; % Load inductance (Henry)

Define the number of frequency points to use for analysis and set up the frequency vector.

nfreq = 256; % Number of frequency points
fLower = fc - (BW/2); % Lower band edge
fUpper = fc + (BW/2); % Upper band edge

Designing Broadband Matching Networks for Antennas

freq = linspace(fLower, fUpper,nfreq);
w = 2*pi*freq;

Frequency array for analysis
Frequency (radians/sec)

)
©
)

©

Understand Load Behavior using Reflection Coefficient and Power Gain

You then use two simple expressions for calculating the load reflection coefficient and the power gain.
This corresponds to directly connecting the source to the antenna input terminals i.e. in Figure 1
there is no matching network.

X1 = w*L;

Z1 Rl + 1i*X1;

GammaL = (Z1 - Z0)./(ZlU + Z0);

unmatchedGt = 10*1ogl0O(1 - abs(GammalL)."2);

Reactance (ohm)

Load impedance (ohm)

Load reflection coefficient
Power delivered to load

o o o° o°

Use the smithplot function to plot the variation in the load reflection coefficient with frequency. An
input reflection coefficient closer to center of the Smith chart means a better matching performance.
This plot shows that the load reflection coefficient is far away from this point. Therefore, there is an
impedance mismatch.

figure
smithplot(freq,GammalL, 'LegendLabels', '#Gamma load', 'LineWidth',2);

+1

+0.5

You can confirm this mismatch by plotting the transducer gain as a function of frequency.
plot(freq.*le-6,unmatchedGt, 'r')

grid on;
title('Power delivered to load - No matching network');

7-139

7 RF Toolbox Examples

xlabel('Frequency (MHz)');
ylabel('Magnitude (decibels)');
legend('G t','Location', 'Best');

As the plot shows, there is approximately 10 dB power loss around the desired region of operation
(295 - 405 MHz). As a result, the antenna needs a matching network that operates over a 110 MHz
bandwidth that is centered at 350 MHz.

Design the Matching Network

The matching network must operate between 295 MHz and 405 MHz, so you choose a bandpass
topology for the matching network which is shown here.

Type - I: Series LC first element followed by shunt LC

-3

LS C5

2 =—C2 L4 ——C4

7-140

Figure 2: Matching network topology

The approach is to design an odd order 0.5 dB Chebyshev lowpass prototype and then apply a
lowpass to bandpass transformation [1] to obtain the initial design for the matching network shown in
figure 2. You now need to enter the order desired and the associated coefficients. This is a single
match problem [3], i.e. the source is purely resistive while load is a combination of R and L, so you
can begin by choosing a five element prototype network.

N =5; % Order of matching network

LCproto = [1.7058 1.2296 2.5408 1.2296 1.7058]; % Lowpass prototype values (Normalized)
wU = 2*pi*fUpper; % Upper band edge

wL = 2*pi*flLower; % Lower band edge

wO = sqrt(wlL*wl); % Geometric mean

Use the Lcladder object to build the bandpass tee matching network. The impedance and frequency
transformations are included for denormalization purposes. Please note that the topology demands a
bandpass tee prototype that begins with a series inductor. If the topology chosen is an LC bandpass pi
then you would begin with shunt C for the lowpass prototype.

Lvals
Cvals

zeros(N,1);
zeros(N,1);

Lvals(1l:2:end)
Cvals(1l:2:end

LCproto(1l:2:end).*Zs./(wU-wL);
(wU-wL) ./ (Zs.*(w0"2).*LCproto(1l:2:end));

eries L's (H)
eries C's (F)

% S
% S

~

Designing Broadband Matching Networks for Antennas

Lvals(2:2:end)
Cvals(2:2:end)

)
“

((wU-wL)*Zs)./((w0"~2).*LCproto(2:2:end)); % Shunt L's (H)
LCproto(2:2:end)./((wU-wL).*Zs); % Shunt C's (F)

Create the matching network

matchingNW = lcladder('bandpasstee',Lvals,Cvals);

)
“©

L

Copy initial values for comparison
initial = Lvals;

Optimize the Designed Matching Network

There are several points to consider prior to the optimization

Objective function - The objective function can be built in different ways depending on the
problem at hand. For this example, the objective function is shown in the file below.

Choice of cost function - The cost function is the function we would like to minimize (maximize) to
achieve near optimal performance. There could be several ways to choose the cost function. One
obvious choice is the input reflection coefficient, gammaln. In this example we have chosen to
minimize the average reflection coefficient in the passband.

Optimization variables - In this case it is a vector of values, for the specific elements to optimize in
the matching network.

Optimization method - A direct search based technique, the MATLAB® function fminsearch, is
used in this example to perform the optimization.

Number of iterations/function evaluations - Set the maximum number of iterations and function
evaluations to perform, so as to tradeoff between speed and quality of match.

The objective function used during the optimization process by fminsearch is shown here.

type('antennaMatchObjectiveFun.m")

function output = antennaMatchObjectiveFun(matchingNW,Lvalues, freq,ZL,Z0)
%ANTENNAMATCHOBJECTIVEFUN is the objective function used by the example

0® 0% o° 0° o o° d° o° o° o°

o°

%

Designing Broadband Matching Networks (Part I: Antenna), which can be
found in broadband match antenna.m.

OUTPUT = ANTENNAMATCHOBJECTIVEFUN(MATCHINGNW, LVALUES, FREQ,Z0)

returns the current value of the objective function stored in OUTPUT
evaluated after updating the inductor values in the object, MATCHINGNW.
The inductor values are stored in the variable LVALUES.

ANTENNAMATCHOBJECTIVEFUN is an objective function of RF Toolbox demo:
Designing Broadband Matching Networks (Part I: Antenna)

Copyright 2008-2020 The MathWorks, Inc.

Ensure positive element values

if any(Lvalues <= 0)

output = Inf;
return

end

%

Update the element values in the matching network

matchingNW.Inductances(1l) = Lvalues(1l);
matchingNW.Inductances(end) = Lvalues(end);

%

Perform analysis on tuned matching network

7-141

7 RF Toolbox Examples

7-142

S = sparameters(matchingNWw, freq, Z0);

% Calculate input reflection coefficient 'gammaln'
gIn = gammain(S,ZL);

% Cost function
output = mean(abs(gIn));

Other possible choices for objective function could be : -
output = max(abs(gIn));
output = -1*mean(Gt pass);

o° o o°

% Animate
smithplot(freq,gIn);
drawnow

There are several ways to choose the cost function and some options are shown within the objective
function above (in comments). The optimization variables are the first and last inductors, L1 and L5
respectively. The element values are stored in the variable L Optimized.

niter = 125;
options = optimset('Display', 'iter', 'MaxIter',niter); % Set options structure
L Optimized = [Lvals(1l) Lvals(end)];
L Optimized = ...
fminsearch(@(L Optimized)antennaMatchObjectiveFun(matchingNWw,
L Optimized, freq,Z1,Z0),L Optimized,options);

Iteration Func-count min f(x) Procedure

0 1 0.933981

1 3 0.933981 initial simplex
2 5 0.920321 expand

3 7 0.911351 expand

4 9 0.853251 expand

5 11 0.730432 expand

6 13 0.526433 reflect

7 15 0.526433 contract inside
8 17 0.421086 reflect

9 19 0.421086 contract inside
10 20 0.421086 reflect

11 22 0.421086 contract inside
12 24 0.421086 contract inside
13 26 0.339941 expand

14 27 0.339941 reflect

15 29 0.285288 reflect

Designing Broadband Matching Networks for Antennas

16 31 0.285288 contract inside
17 32 0.285288 reflect
18 34 0.283533 reflect
19 36 0.283533 contract inside
20 38 0.278945 contract inside
21 40 0.278134 reflect
22 41 0.278134 reflect
23 43 0.276368 contract inside
24 45 0.275793 contract inside
25 47 0.275646 contract inside
26 49 0.275509 reflect
27 51 0.275292 contract inside
28 52 0.275292 reflect
29 54 0.275292 contract inside
30 56 0.275292 contract inside

Optimization terminated:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04
and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-04

Update the Matching Network Elements with Optimal Values

When the optimization routine stops, the optimized element values are stored in L Optimized. The
following code updates the input and output matching network with these values.

matchingNW.Inductances(1)

= Update the matching network inductor L1
matchingNW. Inductances(end)

L Optimized(1);
= Update the matching network inductor L5

L Optimized(end);

[
%
[

%

Analyze and Display Optimization Results

Compare and plot the input reflection coefficient of the matched and unmatched results.

S = sparameters(matchingNW, freq, Z0);

gIn = gammain(S,Z1);

smithplot(freq, [gIn transpose(GammalL)], 'LegendLabels’, ...
{'#Gamma in (Matched)', '#Gamma in (Unmatched) '})

The optimized matching network improves the performance of the circuit. In the passband (295 MHz
to 405 MHz), the input reflection coefficient is closer to the center of the Smith chart.

Plot the power delivered to load for both the matched and unmatched system.

matchedGt = powergain(S,Zs,Zl,'Gt");
figure;

plot(freg*le-6,matchedGt)

hold all;
plot(freg*le-6,unmatchedGt, 'r')

7-143

7 RF Toolbox Examples

grid on;

hold off;

title('Power delivered to load');

legend('Optimized network', 'No matching network', 'Location', 'Best');

Power delivered to load
2 T T T T T T

Optimized network
Mo matching network

280 300 320 340 360 380 400 420

The power delivered to the load is approximately 1 dB down for the optimized matching network.

Display Optimized Element Values

The following code shows the initial and optimized values for inductors L1 and L5.
L1 Initial = L initial(1)

L1 Initial = 1.2340e-07

L1 Optimized = L Optimized(1)

L1 Optimized = 1.2111le-07

L5 Initial = L initial(end)

L5 Initial = 1.2340e-07

L5 Optimized = L Optimized(end)

L5 Optimized = 1.7557e-09

There are a few things to consider when setting up an optimization:

7-144

Designing Broadband Matching Networks for Antennas

* Choosing a different objective function would change the result.

* You can use advanced direct search optimization functions such as patternsearch and
simulannealband in your optimization, but you must have the Global Optimization Toolbox™
installed to access them.

A Low noise amplifier design example is covered in the second example “Designing Broadband
Matching Networks (Part 2: Amplifier)” on page 7-146.

References

[1] Ludwig, Reinhold, and Pavel Bretchko. RF Circuit Design: Theory and Applications. Prentice-Hall,
2000.

[2] Pozar, David. Microwave Engineering. 2nd ed., John Wiley and Sons, 1999.
[3] Cuthbert, Thomas R. Broadband Direct-Coupled and Matching RF Networks. TRCPEP, 1999.

7-145

7 RF Toolbox Examples

Designing Broadband Matching Networks (Part 2: Amplifier)

This example shows how to design broadband matching networks for a low noise amplifier (LNA). In
an RF receiver front end, the LNA is commonly found immediately after the antenna or after the first
bandpass filter that follows the antenna. Its position in the receiver chain ensures that it deals with
weak signals that have significant noise content. As a result the LNA has to not only provide
amplification to such signals but also minimize its own noise footprint on the amplified signal. In this
example you will design an LNA to achieve the target gain and noise figure specifications over a
specified bandwidth, using lumped LC elements. A direct-search based approach is used to arrive at
the optimum element values in the input and output matching network.

PP e S 1 B e e 1
| |
| ' | '
| |
——
—: ll_ | .:—
| WPUT MATCHING LOW NOISE L ATC
= . | L OUTPUT MATEHING |
ROURLE : NETWORK | AMPLIFIER (LMA} : NETWORK | Wi
| |
I a
| | | |
| ' | '
o e o s s i I e —, I

Figure 1: Impedance matching of an amplifier
Set Design Parameters
The design specifications are as follows

* Amplifier is an LNA amplifier

* Center Frequency = 250 MHz

* Bandwidth = 100 MHz

» Transducer Gain greater than or equal to 10 dB
* Noise Figure less than or equal to 2.0 dB

* Operating between 50-Ohm terminations

Specify Bandwidth, Center Frequency, Noise Figure, and Impedance

You are building the matching network for an LNA with a bandpass response, so specify the
bandwidth of match, center frequency, gain, and noise figure targets.

BW = 100e6; % Bandwidth of matching network (Hz)
fc = 250e6; % Center frequency (Hz)

Gt _target = 10; % Transducer gain target (dB)
NFtarget = 2; % Max noise figure target (dB)

Here you specify the source impedance, reference impedance, and the load impedance.

Zs = 50; % Source impedance (0hm)
Z0 = 50; % Reference impedance (0Ohm)
Z1 = 50; % Load impedance (Ohm)

Create Amplifier Object and Perform Analysis

Use the read method to create an amplifier object using data from the file Lnadata.s2p.

7-146

Designing Broadband Matching Networks (Part 2: Amplifier)

Unmatched Amp = read(rfckt.amplifier, 'lnadata.s2p'); % Create amplifier object
Define the number of frequency points to use for analysis and set up the frequency vector.

Npts = 32;

fLower = fc - (BW/2);

fUpper = fc + (BW/2);

freq = linspace(fLower, fUpper,Npts);
w = 2*pi*freq;

No. of analysis frequency points
Lower band edge

Upper band edge

Frequency array for analysis
Frequency (radians/sec)

o o o° o° of

Use the analyze method to perform frequency-domain analysis at the frequency points in the vector

freq.
analyze(Unmatched_ Amp, freq, Z1,Zs,Z0); % Analyze unmatched amplifier

Examine Stability, Power Gain, and Noise Figure

The LNA must operate in a stable region, so our first step is to plot Delta and K for the transistor
being used. Use the plot method of the rfckt object to plot Delta and K as a function of frequency

to see if the transistor is stable.

figure
plot(Unmatched Amp, 'Delta’', 'mag')
hold all

plot(Unmatched Amp, 'K')
title('Device stability parameters')
hold off

grid on

Device stability parameters
26 ; ; ; ; ; ; ; . ;
Delta
24 r K B

P
[T &

=
[-u]
T
1

Magnitude (linear)
" o

=
[

0.8r]

0.6 : : n I
200 210 220 2300 240 250 2680 270 280 280 300

Freq [MHz]

7-147

7 RF Toolbox Examples

As the plot shows, K > 1 and A < 1 for all frequencies in the bandwidth of interest. This means that
the device is unconditionally stable. It is also important to view the power gain and noise figure
behavior across the same bandwidth. Together with the stability information this data allows you to
determine if the gain and noise figure targets can be met.

plot(Unmatched Amp,'Ga','Gt','dB")

[
=

=4
[-s]

—
o
T

=4
=
T
1

Magnitude (decibels)
>

o0
T
1

2 1 1 1 1 1 1 1 1 1
200 210 220 230 240 250 2680 270 280 280 300

Freq [MHz]

This plot, shows the power gain across the 100-MHz bandwidth. It indicates that the transducer gain
varies linearly between 5.5 dB to about 3.1 dB and achieves only 4.3 dB at band center. It also
suggests there is sufficient headroom between the transducer gain Gt and the available gain Ga to
achieve our target Gt of 10 dB.

plot(Unmatched Amp, 'Fmin', 'NF','dB")

axis([200 300 0 2])
legend('Location', 'NorthEast"')

7-148

Designing Broadband Matching Networks (Part 2: Amplifier)

e8]

min ||

MNF

=l
[=-x]
T

=
o

=
£
T

=
[

Magnitude (decibels)
o o o
-9 [=3] o0 -

=
[

D 1 1 1 1 1 1 1 1 1
200 210 220 2300 240 250 2680 270 280 280 300

Freq [MHz]

This plot shows the variation of the noise figure with frequency. The unmatched amplifier clearly
meets the target noise figure requirement. However this would change once the input and output
matching networks are included. Most likely, the noise figure of the LNA would exceed the
requirement.

Design Input and Output Matching Networks

The region of operation is between 200 and 300 MHz, so you choose a bandpass topology for the
matching networks which is shown here,

INPUT QUTPUT
MATCHING MATCHING
NETWORK NETWORK

1‘ LMA J’
Lin1 Lin3 l : Lout1 Lout3

Cout

——

Lin2 —-lr;n § Lout2

7-149

7 RF Toolbox Examples

7-150

Figure 2: Matching network topology

The topology chosen, as seen in Figure 2, is a direct-coupled prototype bandpass network of parallel
resonator type with top coupling [2], that is initially tuned to the geometric mean frequency with
respect to the bandwidth of operation.

N _input = 3; % Order of input matching network
N output = 3; % Order of output matching network
wU = 2*pi*fUpper; % Upper band edge

wL = 2*pi*flLower; % Lower band edge

wO = sqrt(wlL*wl); % Geometric mean

For the initial design all the inductors are assigned the same value on the basis of the first series
inductor. As mentioned in [3], choose the prototype value to be unity and use standard impedance
and frequency transformations to obtain denormalized values [1]. The value for the capacitor in the
parallel trap is set using this inductor value to make it resonate at the geometric mean frequency.
Please note that there are many ways of designing the initial matching network. This example shows
one possible approach.

LvaluesIn
CvaluesIn

(Zs/(wU-wL))*ones(N_input,1);
1/ ((w0”2)*LvaluesIn(2));

eries and shunt L's [H]

% S
% Shunt C [F]

Form Complete Circuit with Matching Networks and the Amplifier

Use either the rfckt.seriesrlc or rfckt.shuntrlc constructor to build each branch of the
matching network. Then, form the matching network from these individual branches by creating an
rfckt.cascade object. The output matching network for this example is the same as the input
matching network.

LC InitialIn = [LvaluesIn;CvaluesIn];
LvaluesQut = LvaluesIn;

CvaluesOut = CvalueslIn;

LC InitialOut = [LvaluesOut;CvaluesOut];

InputMatchingNW = rfckt.cascade('Ckts’,
{rfckt.seriesrlc('L',LvaluesIn(l)),
rfckt.shuntric('C',CvaluesIn,'L',LvaluesIn(2)),
rfckt.seriesrlc('L',LvaluesIn(3))});

OutputMatchingNW = rfckt.cascade('Ckts',
{rfckt.seriesrlc('L',LvaluesOut(1l)),

rfckt.shuntric('C',CvaluesOut,'L',LvaluesOut(2)),
rfckt.seriesrlc('L',LvaluesOut(3))});

Put together the LNA network consisting of matching networks and amplifier by creating an
rfckt.cascade object as shown in previous section.

Matched Amp = rfckt.cascade('Ckts',
{InputMatchingNW,Unmatched Amp,OutputMatchingNWw});

Optimize Input & Output Matching Network
There are several points to consider prior to the optimization.

* Objective function: The objective function can be built in different ways depending on the problem
at hand. For this example, the objective function is shown in the file below.

Designing Broadband Matching Networks (Part 2: Amplifier)

* Choice of cost function: The cost function is the function you would like to minimize (maximize) to
achieve near optimal performance. There could be several ways to choose the cost function. For
this example you have two requirements to satisfy simultaneously, i.e. gain and noise figure. To
create the cost function you first, find the difference, between the most current optimized network
and the target value for each requirement at each frequency. The cost function is the L2-norm of
the vector of gain and noise figure error values.

* Optimization variables: In this case it is a vector of values, for the specific elements to optimize in
the matching network.

* Optimization method: A direct search based technique, the MATLAB® function fminsearch, is
used in this example to perform the optimization.

¢ Number of iterations/function evaluations: Set the maximum no. of iterations and function
evaluations to perform, so as to tradeoff between speed and quality of match.

* Tolerance value: Specify the variation in objective function value at which the optimization
process should terminate.

The objective function used during the optimization process by fminsearch is shown here.
type('broadband match amplifier objective function.m')

function output = broadband match amplifier objective function(AMP,LC Optim,freq,Gt target,NF,Z1l
%BROADBAND MATCH AMPLIFIER OBJECTIVE FUNCTION Is the objective function.

OUTPUT = BROADBAND MATCH AMPLIFIER OBJECTIVE FUNCTION(AMP,LC OPTIM,FREQ,GT TARGET,NF,Z1,Zs,Z0
returns the current value of the objective function stored in OUTPUT

evaluated after updating the element values in the object, AMP. The

inductor and capacitor values are stored in the variable LC OPTIM.

BROADBAND MATCH AMPLIFIER OBJECTIVE FUNCTION is an objective function of RF Toolbox demo:
Designing Broadband Matching Networks (Part II: Amplifier)

d° 0° o° 0% o° o° o°

o°

Copyright 2008 The MathWorks, Inc.

% Ensure positive element values
if any(LC Optim<=0)
output = inf;
return;
end
Update matching network elements - The object AMP has several properties
among which the cell array 'ckts' consists of all circuit objects from
source to load. Since RFCKT.CASCADE was used twice, first to form the
matching network itself and a second time to form the LNA, we have to
step through two sets of cell arrays to access the elements
for loopl = 1:3
AMP.ckts{1}.ckts{loopl}.L
AMP.ckts{3}.ckts{loopl}.L

0° o° o° o° o°

= LC Optim(loopl);

= LC Optim(loopl+4);
end
AMP.ckts{1}.ckts{2}.C

AMP.ckts{3}.ckts{2}.C

LC Optim(4);
LC Optim(8);

% Perform analysis on tuned matching network
Npts = length(freq);
analyze(AMP, freq, Z1,Zs,Z0);

% Calculate target parameters of the Amplifier
target param calculate(AMP, 'Gt','NF','dB");
Gt target param{1}(1:Npts,1);

7-151

7 RF Toolbox Examples

NF_amp = target param{2}(1l:Npts,1);

% Calculate Target Gain and noise figure error
errGt (Gt - Gt_target);
errNF (NF_amp - NF);

% Check to see if gain and noise figure target are achieved by specifying
% bounds for variation.

deltaG = 0.40;

deltaNF = -0.05;

errGt(abs(errGt)<=deltaG) = 0;

errNF (errNF<deltaNF) = 0;

% Cost function
err_vec
output

[errGt;errNF];
norm((err_vec),2);

% Animate

Gmax = (Gt _target + deltaG).*ones(1l,Npts);
Gmin = (Gt _target - deltaG).*ones(1,Npts);
plot (AMP,'Gt','NF','dB");

hold on

plot(freq.*le-6,Gmax, 'r-*")
plot(freq.*le-6,Gmin, 'r-*")

legend('G t','NF', 'Gain bounds', 'Location', 'East');
axis([freq(1l)*1le-6 freq(end)*le-6 0 Gt target+2]);
hold off

drawnow;

The optimization variables are all the elements (inductors and capacitors) of the input and output
matching networks.

nIter = 125; % Max No of Iterations

options = optimset('Display','iter','TolFun',le-2, 'MaxIter',nIter); % Set options structure

LC Optimized [LvaluesIn;CvaluesIn;LvaluesOut;CvaluesOut];

LC Optimized = fminsearch(@(LC Optimized) broadband match amplifier objective function(Matched A
LC Optimized, freq,Gt _target,NFtarget,Zl,Zs,Z0),LC Optimized,options

Iteration Func-count min f(x) Procedure

0 1 30.4869

1 9 28.3549 initial simplex
2 11 25.5302 expand

3 12 25.5302 reflect

4 13 25.5302 reflect

5 14 25.5302 reflect

6 16 22.8228 expand

7 17 22.8228 reflect

8 19 19.0289 expand

9 20 19.0289 reflect

7-152

Designing Broadband Matching Networks (Part 2: Amplifier)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

21
22
24
25
27
28
29
31
32
33
34
35
37
39
41
43
45
46
48
49
51
53
55
56
57
58
59
60
62
63
64
65

19.0289
19.0289
14.8785
14.8785
10.721
10.721
10.721
.84796
.84796
.84796
.84796
.84796
.84796
.84796
.84796
.64666
.64666
.64666
.64666
.64666

© VW VW VvV VvV vV vV vV v vV vV v v o

.64666
7.9372
7.9372
7.9372
7.9372
7.9372
7.9372
7.9372
5.98211
5.98211
5.98211
5.98211

reflect
reflect
expand
reflect
expand
reflect
reflect
expand
reflect
reflect
reflect
reflect
contract
contract
contract
reflect
contract
reflect
contract
reflect
contract
expand
contract
reflect
reflect
reflect
reflect
reflect
expand
reflect
reflect

reflect

outside

outside

inside

inside

inside

inside

outside

7-153

7 RF Toolbox Examples

7-154

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

66
68
70
71
72
73
74
75
77
79
80
81
82
84
85
86
88
90
91
93
95
96
97
98
100
102
103
105
107
109
111
112

~ B~ B~ B

>~ B~ b

.98211
.31973
.31973
.31973
.31973
.31973
.31973
.31973
.83135
.17624
.17624
.17624
.17624

0.691645

0.691645

O O O o o o o o

o o©o o o

.691645

.691645

.691645

.691645

.691645

.691645

.691645

.691645

.691645

.691645

.691645

.691645

0.691645

0.497434

.497434

.497434

.497434

reflect
expand
contract
reflect
reflect
reflect
reflect
reflect
expand
expand
reflect
reflect
reflect
reflect
reflect
reflect
contract
contract
reflect
contract
contract
reflect
reflect
reflect
contract
contract
reflect
contract
reflect
contract
contract

reflect

inside

inside

outside

inside

inside

inside

outside

inside

inside

inside

Designing Broadband Matching Networks (Part 2: Amplifier)

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

Magnitude (decibels)

114
116
118
120
122
123
125
127
128
129
130
131
132
133
134
135
137

0.497434
0.497434
0.444957
0.402851

0

© © © ©O O O O O O oo o o

contract
contract
reflect
expand
reflect
reflect
contract
contract
reflect
reflect
reflect
reflect
reflect
reflect
reflect
reflect

contract

inside

inside

inside

inside

inside

12

G,

MNF

—#— (G3ain bounds

200

210

220

2300 240 250 260 270

Freq [MHz]

280

280 300

7-155

7 RF Toolbox Examples

7-156

91 139 0 contract outside

Optimization terminated:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04
and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-02

Update Matching Network and Re-analyze LNA

When the optimization routine stops, the optimized element values are stored in LC Optimized. The
following code updates the input and output matching network with these values.

for loopl = 1:3
Matched Amp.ckts{1l}.ckts{loopl}.L
Matched Amp.ckts{3}.ckts{loopl}.L

LC_Optimized(loopl);
LC_Optimized(loopl + 4);

end

Matched Amp.ckts{1l}.ckts{2}.C LC Optimized(4);
Matched Amp.ckts{3}.ckts{2}.C LC Optimized(8);
analyze(Matched Amp,freq,Zl,Zs,Z0); % Analyze LNA

Verify Design

The results of optimization can be viewed by plotting the transducer gain and the noise figure across
the bandwidth, and comparing it with the unmatched amplifier.

plot(Matched Amp, 'Gt')

hold all

plot(Unmatched Amp, 'Gt"')

plot(Matched Amp, 'NF')

plot(Unmatched Amp, 'NF')

legend('G t - Matched','G t - Unmatched', 'NF - Matched',...
'"NF - Unmatched', 'Location', 'East')

axis([freq(l)*le-6 freq(end)*le-6 0 12])

hold off

Designing Broadband Matching Networks (Part 2: Amplifier)

12

10

Magnitude (decibels)

Gi - Matched
Gi - Unmatched | |
MF - Matched

- Unmatched

0
200

210

220 2300 240 250 260

Freq [MHz]

270 280 290 300

The plot shows, the target requirement for both gain and noise figure have been met. To understand
the effect of optimizing with respect to only the transducer gain, use the first choice for the cost
function (which involves only the gain term) within the objective function shown above.

Display Optimized Element Values

The optimized inductor and capacitor values for the input matching network are shown below.

Lin Optimized

Lin Optimized
1077 x

0.5722

0.9272

0.3546
Cin Optimized

Cin Optimized

LC Optimized(1:3)

3x1

LC Optimized(4)
6.8526e-12

Similarly, here are the optimized inductor and capacitor values for the output matching network

Lout Optimized

Lout Optimized
10-6 x

LC Optimized(5:7)
3x1

7-157

7 RF Toolbox Examples

0.0517
0.1275
0.0581

Cout Optimized = LC Optimized(8)

Cout Optimized 5.4408e-12

References

[1] Ludwig, Reinhold, and Gene Bogdanov. RF Circuit Design: Theory and Applications. Upper Saddle
River, NJ: Prentice-Hall, 2009.

[2] Cuthbert, Thomas R. Broadband Direct-Coupled and Matching RF Networks. Greenwood, Ark.:
T.R. Cuthbert, 1999.

[3] Cuthbert, T.R. “A Real Frequency Technique Optimizing Broadband Equalizer Elements.” In 2000
IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century.
Proceedings (IEEE Cat No.0OCH36353), 5:401-4. Geneva, Switzerland: Presses Polytech. Univ.
Romandes, 2000. https://doi.org/10.1109/ISCAS.2000.857453.

[4] Pozar, David M. Microwave Engineering. 4th ed. Hoboken, NJ: Wiley, 2012.

7-158

Impedance Matching of a Non-resonant(Small) Monopole

Impedance Matching of a Non-resonant(Small) Monopole

This example shows how to design a double tuning L-section matching network between a resistive
source and capacitive load in the form of a small monopole. The L-section consists of two inductors.
The network achieves conjugate match and guarantees maximum power transfer at a single
frequency. This example requires the following product:

* Antenna Toolbox™
Create Monopole

Create a quarter-wavelength monopole antenna via the Antenna Toolbox with the resonant frequency
around 1 GHz. For the purpose of this example, we choose a square ground plane of side 0.75A.

fres = 1e9;

speed0fLight = physconst('lightspeed');

lambda = speedOfLight/fres;

L = 0.25*1lambda;

dp = monopole('Height',L, 'Width',L/50,...
'GroundPlaneLength',0.75*1ambda, ...
'GroundPlaneWidth',0.75*1lambda);

Calculate Monopole Impedance

Specity the source (generator) impedance, the reference (transmission line) impedance and the load
(antenna) impedance. In this example, the load Z10 will be the non-resonant (small) monopole at the
frequency of 500 MHz, which is the half of the resonant frequency. The source has the equivalent
impedance of 50 ohms.

f0 = fres/2;

Zs = 50;

20 = 50;

Z10 = impedance(dp,f0);
R10 = real(Z10);

X10 = imag(Z10);

Define the number of frequency points for the analysis and set up a frequency band about 500 MHz .

Npts = 30;

fspan = 0.1;

fmin = f0*(1 - (fspan/2));

fmax = fO*(1 + (fspan/2));

freq = unique([fO linspace(fmin, fmax,Npts)]);

w = 2*pi*freq;

Understand Load Behavior using Reflection Coefficient and Power Gain

Calculate the load reflection coefficient and the power gain between the source and the antenna.
S = sparameters(dp, freq);

GammalL = rfparam(S, 1,1);

Gt = 10*loglO(1 - abs(GammalL).”2);

Plotting the input reflection coefficient on a Smith chart shows the capacitive behavior of this
antenna around the operating frequency of 500 MHz. The center of the Smith chart represents the
matched condition to the reference impedance. The location of the reflection coefficient trace around
—j5.0Q confirms that there is a severe impedance mismatch.

7-159

7 RF Toolbox Examples

figl = fiqure;
hsm = smithplot(figl, freq,GammaL, 'LineWidth',2.0, 'Color','m");
hsm.LegendLabels = {'#Gamma L'};

+1

fig2 = figure;
plot(freg*le-6,Gt, 'm', 'LineWidth',2);
grid on

xlabel('Frequency [MHz]')
ylabel('Magnitude (dB)"')

title('Power delivered to load')

7-160

Impedance Matching of a Non-resonant(Small) Monopole

Power delivered to load
—'1 a T T T T T T T T T

-18.5

-19

-19.5

Magnitude (dB)

-20.5

-21 :
475 480 485 490 495 500 505 510 515 520 525

Frequency [MHz]

As the power gain plot shows, there is approximately 20 dB power loss around the operating
frequency (500 MHz).

Design Matching Network

The matching network must ensure maximum power transfer at 500 MHz. The L-section double
tuning network achieves this goal [1]. The network topology, shown in the figure that follows consists
of an inductor in series with the antenna, that cancels the large capacitance at 500 MHz, and a shunt
inductor that further boosts the output resistance to match the source impedance of 50 Q.

e ¥ Y L

Zs
L1

|

Vs é L2 zZL
|
1

7-161

7 RF Toolbox Examples

7-162

omegal = 2*pi*f0;
L2 = (1/omega0)*sqrt((Zs*R10)/(1-(R1O/Zs)));
L1 = (-X10/omega0®) - (L2/2) - sqrt((L2"2/4)-(((RL0)"2)/omegad”2));

Create Matching Network and Calculate S-parameters

The matching network circuit is created via the RF Toolbox and it consists of the two inductors whose
values have been calculated above. The S-parameters of this network are calculated over the
frequency band centered at the operating frequency.

IND1 = inductor(Ll,'L1");

IND2 = inductor(L2,'L2");

MatchingNW = circuit('double tuning');
add(MatchingNw, [0 1],IND2);
add(MatchingNW, [1 2],IND1);
setports(MatchingNw,[1 0],[2 01);
Smatchnw = sparameters(MatchingNW, freq);

The circuit element representation of the matching network is shown below.
disp(MatchingNW)
circuit: Circuit element

ElementNames: {'L2' 'L1'}
Elements: [1x2 inductor]
Nodes: [0 1 2]
Name: 'double tuning'
NumPorts: 2
Terminals: {'pl+' 'p2+'

pl-' ‘'p2-'}
Reflection Coefficient and Power Gain with Matching Network
Calculate the input reflection coefficient/power gain for the antenna load with the matching network.

Zl = 1impedance(dp,freq);

GammaIn = gammain(Smatchnw,Zl);
Gtmatch = powergain(Smatchnw,Zs,Zl,'Gt");
Gtmatch = 10*logl0(Gtmatch);

Compare Results

Plot the input reflection coefficient and power delivered to the antenna, with and without the
matching network. The Smith chart plot shows the reflection coefficient trace going through its
center thus confirming the match. At the operation frequency of 500 MHz, the generator transfers
maximum power to the antenna. The match degrades on either side of the operating frequency.

add (hsm, freq,Gammaln);
hsm.LegendLabels(2) = {'#Gamma In'};

Impedance Matching of a Non-resonant(Small) Monopole

j’
m——["n 41

figure(fig2)

hold on

plot(freg*le-6,Gtmatch, 'LineWidth',2);
axis([min(freq)*le-6,max(freq)*le-6,-25,0])

legend('No matching network', 'Double tuning', 'Location', 'Best');

7-163

7 RF Toolbox Examples

Power delivered to load

D T T T T T T T T
)
=
W
=]
=
=
@
= -15 Mo matching network
Double tuning
=201
_2 5 1 1 1 1 1 1 1 1 1
475 480 485 490 495 500 505 510 515 520 525
Frequency [MHz]
References

[1] M. M. Weiner, Monopole Antennas, Marcel Dekker, Inc.,CRC Press, Rev. Exp edition, New York,
pp.110-118, 2003.

7-164

RF Circuit Objects

RF Circuit Objects

This example shows how to create and use RF Toolbox™ circuit objects. In this example, you create
three circuit (rfckt) objects: two transmission lines and an amplifier. You visualize the amplifier data
using RF Toolbox™ functions and retrieve frequency data that was read from a file into the amplifier
rfckt object. Then you analyze the amplifier over a different frequency range and visualize the
results. Next, you cascade the three circuits to create a cascaded rfckt object. Then you analyze the
cascaded network and visualize its S-parameters over the original frequency range of the amplifier.
Finally, you plot the S11, S22, and S21 parameters and noise figure of the cascaded network.

Create rfckt Objects

Create three circuit objects: two transmission lines, and an amplifier using data from default.amp
data file.

FirstCkt = rfckt.txline;

SecondCkt = rfckt.amplifier('IntpType', 'cubic');
read(SecondCkt, 'default.amp');

ThirdCkt = rfckt.txline('LinelLength',0.025,"'PV',2.0e8);
View Properties of rfckt Objects

You can use the get function to view an object's properties. For example,
PropertiesOfFirstCkt = get(FirstCkt)

PropertiesOfFirstCkt = struct with fields:
LineLength: 0.0100

StubMode: 'NotAStub'
Termination: 'NotApplicable’
Freq: 1.0000e+09
Z0: 50.0000 + 0.00001
PV: 299792458
Loss: 0O
IntpType: 'Linear'
nPort: 2
AnalyzedResult: []
Name: 'Transmission Line'

PropertiesOfSecondCkt

PropertiesOfSecondCkt = struct with fields:

NoiseData: [1x1 rfdata.noise]
NonlinearData: [1x1 rfdata.power]
IntpType: 'Cubic’
NetworkData: [1x1 rfdata.network]
nPort: 2
AnalyzedResult: [1x1 rfdata.data]
Name: 'Amplifier’

get(SecondCkt)

PropertiesOfThirdCkt = get(ThirdCkt)

PropertiesOfThirdCkt = struct with fields:
LineLength: 0.0250
StubMode: 'NotAStub'
Termination: 'NotApplicable’

7-165

7 RF Toolbox Examples

7-166

Freq: 1.0000e+09
Z0: 50.0000 + 0.00001
PV: 200000000

Loss: 0

IntpType: 'Linear'
nPort: 2
AnalyzedResult: []

Name: 'Transmission Line'

List Methods of rfckt Objects

You can use the methods function to list an object's methods. For example,
MethodsOfThirdCkt = methods(ThirdCkt);

Change Properties of rfckt Objects

Use the get function or Dot Notation to get the line length of the first transmission line.

DefaultLength = FirstCkt.LinelLength;

Use the set function or Dot Notation to change the line length of the first transmission line.

FirstCkt.LinelLength = .001;
NewLength = FirstCkt.LinelLength;

Plot the Amplifier S11 and S22 Parameters

Use the smithplot method of circuit object to plot the original S11 and S22 parameters of the
amplifier (SecondCkt) on a Z Smith chart. The original frequencies of the amplifier's S-parameters
range from 1.0 GHz to 2.9 GHz.

figure
smithplot(SecondCkt,[1 1;2 21);

RF Circuit Objects

S11
522

+j‘|

Plot the Amplifier Pin-Pout Data

Use the plot method of circuit object to plot the amplifier (SecondCkt) Pin-Pout data, in dBm, at 2.1
GHz on an X< plane.

plot(SecondCkt, 'Pout', 'dBm")
legend('show', 'Location', 'northwest');

Get the Original Frequency Data and the Result of the Analyzing the Amplifier over the
Original Frequencies

When the RF Toolbox reads data from default.amp into an amplifier object (SecondCkt), it also
analyzes the amplifier over the frequencies of network parameters in default.amp file and store the
result at the property AnalyzedResult. Here are the original amplifier frequency and analyzed
result over it.

f = SecondCkt.AnalyzedResult.Freq;
data = SecondCkt.AnalyzedResult

data =
rfdata.data with properties:

Freq: [191x1 double]

S Parameters: [2x2x191 double]
GroupDelay: [191x1 double]
NF: [191x1 doublel]
0IP3: [191x1 double]

7-167

7 RF Toolbox Examples

7-168

Z0: 50.0000 + 0.0000i
ZS: 50.0000 + 0.0000i
ZL: 50.0000 + 0.0000i
IntpType: 'Cubic'
Name: 'Data object'

Analyze the Amplifier over a New Frequency Range and Plot Its New S11 and S22

To visualize the S-parameters of a circuit over a different frequency range, you must first analyze it
over that frequency range.

analyze(SecondCkt,1.85e9:1e7:2.55€9);
smithplot(SecondCkt,[1 1;2 2], 'GridType','ZY");

Create and Analyze a Cascaded rfckt Object

Cascade three circuit objects to create a cascaded circuit object, and then analyze it at the original
amplifier frequencies which range from 1.0 GHz to 2.9 GHz.

CascadedCkt = rfckt.cascade('Ckts',{FirstCkt,SecondCkt,ThirdCkt});
analyze(CascadedCkt,f);

Taline Amplifier Taline

Figure 1: The cascaded circuit.
Plot the S11 and S22 Parameters of the Cascaded Circuit

Use the smithplot method of circuit object to plot S11 and S22 of the cascaded circuit
(CascadedCkt) on a Z Smith chart.

smithplot(CascadedCkt,[1 1;2 2], 'GridType','Z');
Plot the S21 Parameters of the Cascaded Circuit

Use the plot method of circuit object to plot S21 of the cascaded circuit (CascadedCkt) on an XY
plane.

plot(CascadedCkt, 'S21"','dB")
legend show

Plot the Budget S21 Parameters and Noise Figure of the Cascaded Circuit

Use the plot method of circuit object to plot the budget S21 parameters and noise figure of the
cascaded circuit (CascadedCkt) on an X-Y plane.

plot(CascadedCkt, 'budget', 'S21','NF")
legend show

RF Data Objects

RF Data Objects

This example shows you how to manipulate RF data directly using rfdata objects. First, you create
an rfdata.data object by reading in the S-parameters of a two-port passive network stored in the
Touchstone® format data file, passive.s2p. Next, you create a circuit object, rfckt.amplifier,
and you update the properties of this object using three data objects.

Read a Touchstone® Data File

Use the read method of the rfdata.data object to read the Touchstone data file passive.s2p.
The parameters in this data file are the 50-Ohm S-parameters of a 2-port passive network at
frequencies ranging from 315 kHz to 6.0 GHz.

data = rfdata.data;
data = read(data, 'passive.s2p')
data =

rfdata.data with properties:

Freq: [202x1 double]
S Parameters: [2x2x202 double]

GroupDelay: [202x1 double]
NF: [202x1 double]
OIP3: [202x1 double]

Z0: 50.0000 + 0.0000i

ZS: 50.0000 + 0.0000i

ZL: 50.0000 + 0.0000i

IntpType: 'Linear'

Name: 'Data object'

Use the extract method of the rfdata.data object to get other network parameters. For example,
here are the frequencies, 75-Ohm S-parameters, and Y-parameters which are converted from the
original 50-Ohm S-parameters in passive.s2p data file.

[s params,freq] = extract(data,'S PARAMETERS',75);
y params = extract(data,'Y PARAMETERS');

Use the RF utility function smithplot to plot the 75-Ohm S11 on a Smith chart.
sll = s params(1,1,:);

figure
smithplot(freq, s11(:))

7-169

7 RF Toolbox Examples

+j‘|

Here are the four 75-Ohm S-parameters and four Y-parameters at 6.0 GHz, the last frequency.

f = freq(end)

f = 6.0000e+09

s = s params(:,:,end)

s = 2x2 complex
-0.0764 - 0.54011 0.6087 - 0.3018i
0.6094 - 0.3020i -0.1211 - 0.5223i1

y =y params(:,:,end)

y = 2x2 complex

0.0210 + 0.0252i -0.0215 - 0.0184i
-0.0215 - 0.01851 0.0224 + 0.02661

Create RFDATA Objects for an Amplifier with Your Own Data

In this example, you create a circuit object, rfckt.amplifier. Then you create three data objects
and use them to update the properties of the circuit object.

The rfckt.amplifier object has properties for network parameters, noise data and nonlinear data:

7-170

RF Data Objects

* NetworkDatais an rfdata.network object for network parameters.

* NoiseData is for noise parameters which could be a scalar NF (dB), an rfdata.noise, or an
rfdata.nf object.

* NonlinearData is for nonlinear parameters which could be a scalar OIP3 (dBm), an
rfdata.power, or an rfdata.ip3 object.

By default, these properties of rfckt.amplifier contain data from the default.amp data file.
NetworkData is an rfdata.network object that contains 50-Ohm 2-port S-Parameters at 191
frequencies ranging from 1.0 GHz to 2.9 GHz. NoiseData is an rfdata.noise object that contains
spot noise data at 9 frequencies ranging from 1.9 GHz to 2.48 GHz. The NonlinearData parameter
is an rfdata.power object that contains Pin/Pout data at 2.1 GHz.

amp = rfckt.amplifier

amp =
rfckt.amplifier with properties:

NoiseData: [1x1 rfdata.noise]
NonlinearData: [1x1 rfdata.power]
IntpType: 'Linear'
NetworkData: [1x1 rfdata.network]
nPort: 2
AnalyzedResult: [1x1 rfdata.data]
Name: 'Amplifier'’

Use the following code to create an rfdata.network object that contains 2-port Y-parameters of an
amplifier at 2.08 GHz, 2.10 GHz and 2.15 GHz. Later in this example, you use this data object to
update the NetworkData property of the amplifier object.

f =1[2.08 2.10 2.15] * 1.0e9;

y(:,:,1) = [-.0090-.0104i, .0013+.0018i; -.2947+.2961i, .0252+.0075i];
y(:,:,2) = [-.0086-.0047i, .0014+.0019i; -.3047+.3083i, .0251+.0086i];
y(:,:,3) = [-.0051+.0130i, .0017+.0020i; -.3335+.3861i, .0282+.0110i];
netdata = rfdata.network('Type','Y PARAMETERS', 'Freq',f, 'Data’',y)
netdata =

rfdata.network with properties:

Type: 'Y PARAMETERS'
Freq: [3x1 double]
Data: [2x2x3 doublel
Z0: 50.0000 + 0.00001
Name: 'Network parameters'

Use the following code to create an rfdata.nf object that contains noise figures of the amplifier, in
dB, at seven frequencies ranging from 1.93 GHz to 2.40 GHz. Later in this example, you use this data
object to update the NoiseData property of the amplifier object.

f =11.93 2.06 2.08 2.10 2.15 2.3 2.4] * 1.0e+009;
nf = [12.4521 13.2466 13.6853 14.0612 13.4111 12.9499 13.3244];
nfdata = rfdata.nf('Freq',f, 'Data',nf)

nfdata =
rfdata.nf with properties:

7-171

7 RF Toolbox Examples

7-172

Freq: [7x1 double]
Data: [7x1 double]
Name: 'Noise figure'

Use the following code to create an rfdata.ip3 object that contains the output third-order intercept
points of the amplifier, which is 8.45 watts at 2.1 GHz. Later in this example, you use this data object
to update the NonlinearData property of the amplifier object.

ip3data = rfdata.ip3('Type', '0IP3', 'Freq',2.1e9, 'Data',8.45)

ip3data =
rfdata.ip3 with properties:
Type: 'OIP3'
Freq: 2.1000e+09
Data: 8.4500

Name: '3rd order intercept'

Use the following code to update the properties of the amplifier object with three data objects you
created in the previous steps. To get a good amplifier object, the data in these data objects must be
accurate. These data could be obtained from RF measurements, or circuit simulation using other
tools.

amp.NetworkData = netdata;
amp.NoiseData = nfdata;
amp.NonlinearData = ip3data

amp =
rfckt.amplifier with properties:

NoiseData: [1x1 rfdata.nf]
NonlinearData: [1x1 rfdata.ip3]
IntpType: 'Linear'
NetworkData: [1x1 rfdata.network]
nPort: 2
AnalyzedResult: [1x1 rfdata.data]
Name: 'Amplifier’

Design IF Butterworth Bandpass Filter

Design IF Butterworth Bandpass Filter

This example shows how to design an Intermediate Frequency (IF) Butterworth bandpass filter with a
center frequency of 400 MHz, bandwidth of 5 MHz, and Insertion Loss (IL) of 1dB [1] on page 7-0

Account for Mismatch/Insertion Loss (IL)

Practical circuits suffer a certain degree of mismatch. Mismatch happens when an unmatched circuit
is connected to an RF source leading to reflections that result in a loss of power delivered to the
circuit. You can use IL to define this mismatch. Calculate the load impedance mismatch to account for
the given IL. The IL and normalized load impedance (ZL) are related as follows [2] on page 7-0 ,[3]
on page 7-0

IL (dB) = -10%log10(1-| yin |~2) = -10¥log10(4*ZL/(1+ZL)"2)

The roots of the resulting polynomial return the value of normalized load impedance. The
unnormalized values are 132.986 Ohms and 18.799 Ohms. Choose the higher value for the filter
design to account for the IL.

Load impedance:
ZL = 132.986;

Design Filter

Use rffilter to design the filter for the desired specifications.

Fcenter = 400e6;
Bwpass = 5e6;
if filter = rffilter('ResponseType', 'Bandpass’,...
'"FilterType', 'Butterworth', 'FilterOrder',4, ...
'PassbandAttenuation',10*logl0(2), ...
'"Implementation', 'Transfer function',...
'PassbandFrequency', [Fcenter-Bwpass/2 Fcenter+Bwpass/2], 'Zout',ZL);

Plot S-parameters and Group Delay of Filter
Calculate S-parameters.

freq = linspace(370e6,410e6,2001);
Sf = sparameters(if filter, freq);

figure;
line = rfplot(Sf);
lgd = legend;

lgd.Location = "best";
[~,freq_index] = min(abs(freq-Fcenter));
datatip(line(3), 'Datalndex',freq_index);

7-173

7 RF Toolbox Examples

D T T T T T T
“\i__ X 400
101 Y -0.999998 1
=201 T
__-30f y
@
=2
o 40 r 1
s
=
5 -50 .
i}
=
60 T
dB(S,,)
-Tor]
dB[Sz1}
dB(S,.)
a0t 127
deﬂ}
—QD 1 1 1 1 1 1 1
370 375 380 385 390 395 400 405 410
Frequency (MHz)

A datatip shows a 1dB IL at Fcenter = 400 MHz.

Calculate groupdelay:

gd = groupdelay(if filter, freq);
figure;

plot(freq/le6, gd);
xlabel('Frequency (MHz)
ylabel('Group delay (s)
grid on;

")
")

7-174

Design IF Butterworth Bandpass Filter

x 1077

o]

Group delay (s)
o

D L I 1 1 1 1
370 375 380 385 390 395 400 405 410

Frequency (MHz)

Insert Filter into rfbudget Object

An rffilter object can be inserted directly into an rfbudget object to perform budget analysis.

rfb

rfbudget(if filter,Fcenter,-30,Bwpass)

rfb =
rfbudget with properties:

Elements: [1x1 rffilter]
InputFrequency: 400 MHz
AvailableInputPower: -30 dBm
SignalBandwidth: 5 MHz
Solver: Friis
AutoUpdate: true

Analysis Results

OutputFrequency: 400 (MHz)
OutputPower: -31 (dBm)
TransducerGain: -1 (dB)
NF: 0 (dB)

IIP2: [1 (dBm)

0IP2: [1 (dBm)

IIP3: Inf (dBm)

0IP3: Inf (dBm)

SNR: 76.99 (dB)

7-175

7 RF Toolbox Examples

7-176

References

[1] Hongbao Zhou, Bin Luo. " Design and budget analysis of RF receiver of 5.8GHz ETC reader"
Published at Communication Technology (ICCT), 2010 12th IEEE International Conference, Nanjing,
China, November 2010.

[2] Electronic Filter Analysis and Synthesis, Michael G. Ellis, Sr., Artech House, Chapter 7.
[3] RF Circuit Design, R. Ludwig, G. Bogdanov, Pearson Education, Chapter 2.

See Also

“Superheterodyne Receiver Using RF Budget Analyzer App” on page 7-2

Passivity: Test, Visualize, and Enforce Passivity of rationalfit Output

Passivity: Test, Visualize, and Enforce Passivity of rationalfit
Output

This example shows how to test, visualize, and enforce the passivity of output from the rationalfit
function.

S-parameter data passivity

Time-domain analysis and simulation depends critically on being able to convert frequency-domain S-
parameter data into causal, stable, and passive time-domain representations. Because the rationalfit
function guarantees that all poles are in the left half plane, rationalfit output is both stable and causal
by construction. The problem is passivity.

N-port S-parameter data represents a frequency-dependent transfer function H(f). You can create an
sparameter object in RF Toolbox by reading a Touchstone file, such as passive.s2p, into the
sparameter function. You can use the ispassive function to check the passivity of the S-parameter
data, and the passivity function to plot the 2-norm of the NxN matrices H(f) at each data frequency.

S = sparameters('passive.s2p');
ispassive(S)

ans = logical
1

passivity(S)

7-177

7 RF Toolbox Examples

7-178

Data passive, max norm(H) is 1 - 4.06e-08 at 0.00054 GHz

0.998 r]

0.996]

0.994 r]

H)

= 0.992 T

FMOrm

0.99]

0.988 r]

0.986 |]

0.984 r]

05 1 15 2 25 3 35 4 45 5 55
Frequency (GHz)

o

Testing and visualizing rationalfit output passivity

The rationalfit function converts N-port sparameter data S into an NxN matrix of rfmodel.rational
objects.

Using the ispassive function on the NxN fit output reports that even if input data S is passive, the
output fit is not passive. In other words, the norm H(f) is greater than one at some frequency in the
range [0,Inf].

The passivity function takes an NxN fit as input and plots its passivity. This is a plot of the upper
bound of the norm(H(f)) on [0,Inf], also known as the H-infinity norm.

fit = rationalfit(S);
ispassive(fit)
ans = logical

0

passivity(fit)

Passivity: Test, Visualize, and Enforce Passivity of rationalfit Output

Fit not passive, Hm norm is 1+ 1.791e-02 at 17.6816 GHz.
1.1 - - - - - - - - -

D3 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 180 180 200

Frequency (GHz)

The makepassive function takes as input an NxN array of fit objects and also the original S-parameter
data, and produces a passive fit by using convex optimization techniques to optimally match the data
of the S-parameter input S while satisfying passivity constraints. The residues C and feedthrough
matrix D of the output pfit are modified, but the poles A of the output pfit are identical to the poles A
of the input fit.

pfit = makepassive(fit,S, 'Display','on');

ITER H-INFTY NORM FREQUENCY ERRDB CONSTRAINTS
0 1+ 1.791e-02 17.6816 GHz -40.4702
1 1+ 2.877e-04 275.36 MHz -40.9167 5
2 1 + 9.294e-05 365.508 MHz -40.9092 7
3 1 - 3.305e-07 368.334 MHz -40.906 9
ispassive(pfit)
ans = logical
1
passivity(pfit)

7-179

7 RF Toolbox Examples

7-180

Fit passive, HN norm is 1 - 3.305e-07 at 368.334 MH=z.

0.95

0.9r

normiH)

0.8r

0751

0 20 40 60 B0O 100 120 140 160 180 200
Frequency (GHz)

all(vertcat(pfit(:).A) == vertcat(fit(:).A))

ans = logical
1

Start makepassive with prescribed poles and zero C and D

To demonstrate that only C and D are modified by makepassive, one can zero out C and D and re-run
makepassive. The output pfit still has the same poles as the input fit. The differences between pfit and
pfit2 arise because of the different starting points of the convex optimizations.

One can use this feature of the makepassive function to produce a passive fit from a prescribed set of
poles without any idea of starting C and D.

for k = 1l:numel(fit)

fit(k).C(:) = 0;
fit(k).D(:) = 0;
end
pfit2 = makepassive(fit,S);
passivity(pfit2)

Passivity: Test, Visualize, and Enforce Passivity of rationalfit Output

Fit passive, HN norm is 1 - 3.256e-07 at 363.093 MH=z.

0.95T

0.9r

normiH)

0.7v58T

0 20 40 60 B0O 100 120 140 160 180 200
Frequency (GHz)

all(vertcat(pfit2(:).A) == vertcat(fit(:).A))

ans = logical
1

Generate equivalent SPICE circuit from passive fit

The generateSPICE function takes a passive fit and generates an equivalent circuit as a SPICE subckt
file. The input fit is an NxN array of rfmodel.rational objects as returned by rationalfit with an
sparameters object as input. The generated file is a SPICE model constructed solely of passive R, L, C
elements and controlled source elements E, F, G, and H.

generateSPICE(pfit2, 'mypassive.ckt"')
type mypassive.ckt

* Equivalent circuit model for mypassive.ckt
.SUBCKT mypassive pol po2
Vspl pol pl O

Vsrl pl prl 0O

Rpl prl 0 50

Rul ul 0 50

Frl ul 0 Vsrl -1

Ful ul 0 Vspl -1

Ryl y1 01

Gyl p1 0 y1 0 -0.02

Vsp2 po2 p2 0O

7-181

7 RF Toolbox Examples

7-182

Vsr2 p2 pr2 0

Rp2 pr2 0 50

Ru2 u2 0 50

Fr2 u2 0 Vsr2 -1

Fu2 u2 0 Vsp2 -1

Ry2 y2 01

Gy2 p2 0 y2 0 -0.02

Rxl1 x1 0 1

Cx1 x1 0 2.73023895950556e-12
Gx1 1 x1 0 ul 0 -2.06041591077443
Rx2 x2 01

Cx2 x2 0 7.77758887311932e-12
Gx2 1 x2 0 ul 0 -2.91722209896444
Rx3 x3 01

Cx3 x3 0 2.29141629509564e-11
Gx3 1 x3 0 ul 0 -0.544083373474492
Rx4 x4 0 1

Cx4 x4 0 9.31845201376869e-11
Gx4 1 x4 0 ul 0 -0.654514087523376
Rx5 x5 0 1

Cx5 x5 0 4.89917765876403e-10
Gx5 1 x5 0 ul 0 -0.0811507561613665
Rx6 x6 0 1

Fxc6 7 x6 0 Vx7 18.7422231102433
Cx6 x6 xm6 3.95175907354693e-09
Vx6 xm6 0 0O

Gx6 1 x6
Rx7 x7 0

0 ul 0 -0.0922189111766027
1

Fxc7 6 x7 0 Vx6 -0.0837933513792858
Cx7 x7 xm7 3.95175907354693e-09

Vx7 xm7 0 0

Gx7_ 1 x7 0 ul 0 0.00772733162803622
Rx8 x8 0 1

Cx8 x8 0 1.25490425611535e-08

Gx8 1 x8 0 ul 0 -0.94764184874642
Rx9 x9 0 1

Cx9 x9 0 2.73023895950556e-12

Gx9 2 x9 0 u2 0 -2.08389843282319
Rx10 x10 0 1

Cx10 x10 0 7.77758887311932e-12
Gx10 2 x10 0 u2 0 -2.92728313915412
Rx11 x11 0 1

Cx11 x11 0 2.29141629509564e-11
Gx11 2 x11 0 u2 0 -0.607554814437625
Rx12 x12 0 1

Cx12 x12 0 9.31845201376869e-11
Gx12 2 x12 0 u2 0 -0.69266128419193
Rx13 x13 0 1

Cx13 x13 0 4.89917765876403e-10
Gx13 2 x13 0 u2 0 -0.0860910168425337
Rx14 x14 0 1

Fxcl4 15 x14 0 Vx15 18.3755190649577
Cx14 x14 xml4 3.95175907354693e-09

Vx14 xml4 0 0O
Gx14 2 x14 0 u2 0 -0.0931994599559166

Rx15 x15
Fxcl5 14
Cx15 x15

01
x15 0 Vx14 -0.0854655414714513
xml5 3.95175907354693e-09

Passivity: Test, Visualize, and Enforce Passivity of rationalfit Output

Vx15 xml5 0 0
Gx15 2 x15 0 u2 0 0.00796534230997925
Rx16 x16 0 1
Cx16 x16 0 1.25490425611535e-08

x16 0 u2 0 -0.948029479670606

Gx16 2
Gycl 1
Gycl 2
Gycl 3
Gycl 4
Gycl 5
Gycl 6
Gycl 7
Gycl 8
Gycl 9
Gycl 10
Gycl 11
Gycl 12
Gycl 13
Gycl 14
Gycl 15
Gycl 16
Gydl 1
Gydl 2
Gyc2 1
Gyc2 2
Gyc2 3
Gyc2 4
Gyc2 5
Gyc2 6
Gyc2 7
Gyc2 8
Gyc2 9
Gyc2 10
Gyc2 11
Gyc2 12
Gyc2 13
Gyc2 14
Gyc2 15
Gyc2_16

[cNoNoNoNoNoNoNoNo)

[cNoNoNoNoNoNoNoNoNoNO)

[ocNoNoNoNoNoNO]

0
0
0
0
0
0
0

x1
X2
x3
x4
x5
X6
x7
X8
x9
x10
x11
x12
x13
x14
x15
x16
ul
u2
x1
X2
x3
x4
x5
X6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16

[cNoNoNoNoNoNoNoNo)

[cNoNoNoNoNoNoNoNoNoNO)

Gyd2 1 y2 0 ul 0
Gyd2 2 y2 0 u2 0 0.700221388798984

.ENDS

-0.139006949958533
-0.0228622371181378
-1
-1
1
-1

1

.999809008197475

0

1

0 -1

0 0.809866261767986
0 0.941820695979854
0 -0.935045718790143
0 0.988835396789119
0 0.953950187601586
0 -1
0.603104545259004
-0.352308855696254
1

-1

0.90074662418159
0.996964307864912
-0.991550107636063
0.997604909308456
0.961690517299605
-1
-0.265686787845426
0 0.0684926577839625
0 -1

0 -1

01

0 -1

0 -1

0 0.999980708070931
-0.337210451735002

7-183

7 RF Toolbox Examples

Design, Visualize and Explore Inverse Chebyshev filter - |

This example shows how to determine the transfer function for a fifth-order inverse Chebyshev low-
pass filter with 1 dB passband attenuation, cutoff frequency of 1 rad/sec, and a minimum attenuation
of 50 dB in the stopband. Determine the amplitude response at 2 rad/sec [1].

The rffilter object is used to design a RF Filter. A filter requires a minimum set of parameters
for it to be completely defined. Refer to the table in the rffilter documentation page which reflects
this set of required parameters. Each set of parameters result in its corresponding syntax. Input
these parameters as name-value pairs to rffilter to design the specified filter. Note that the
parameters which are required but are not defined assume default values.

After initialization of an rffilter object, the property DesignData contains the complete solution
of the filter designed. It is a structure which contains fields such as the computed factorized
polynomials for the construction of the transfer function.

Design Chebyshev Type Il filter

N = 5; % Filter order

Fp = 1/(2*pi); % Passband cutoff frequency
Ap =1; % Passband attenuation

As = 50; % Stopband attenuation

Use rffilter object to create a desired filter. The only implementation type for Inverse Chebyshev
is 'Transfer function'.
r = rffilter('FilterType', 'InverseChebyshev', 'ResponseType', 'Lowpass',
'"Implementation', 'Transfer function', 'FilterOrder',N,
'"PassbandFrequency',Fp, 'StopbandAttenuation',As,
'PassbandAttenuation',Ap);

Generate and visualize transfer function polynomial

Use tf function to generate transfer function polynomials.

[numerator, denominator] = tf(r);
format long g

Display Numerator21 polynomial coefficients.
disp('Numerator polynomial coefficients of Transfer function');
Numerator polynomial coefficients of Transfer function
disp(numerator{2,1});

Columns 1 through 3

0.0347736250821381 0 0.672768334081369
Columns 4 through 5
0 2.6032214373595

Display Denominator polynomial coefficients.

disp('Denominator polynomial coefficients of Transfer function');

7-184

Design, Visualize and Explore Inverse Chebyshev filter - |

Denominator polynomial coefficients of Transfer function
disp(denominator);

Columns 1 through 3
1 3.81150884154936 7.2631952221038

Columns 4 through 6
8.61344575257214 6.42982763112227 2.6032214373595

Optionally, use Control System Toolbox to visualize all transfer functions.

G s = tf(numerator,denominator)
Gs =
From input 1 to output...
s™5
I e R
s™5 + 3.812 s™4 + 7.263 s™3 + 8.613 s™2 + 6.43 s + 2.603
0.03477 s™4 + 0.6728 s™2 + 2.603
A

s™5 + 3.812 s™4 + 7.263 s"3 + 8.613 s™2 + 6.43 s + 2.603

From input 2 to output...
0.03477 s™4 + 0.6728 s™2 + 2.603

s™5 + 3.812 s™4 + 7.263 s”™3 + 8.613 s™2 + 6.43 s + 2.603
Continuous-time transfer function.
Visualize amplitude response of filter

frequencies
Sparam

= linspace(0,1,1001);

= sparameters(r, frequencies);

Note: S-parameters computes the transfer function using quadratic (lowpass/highpass) or quartic
(bandpass/bandstop) factorized forms. These factors are used to construct the polynomials. The
polynomial form is numerically unstable for larger filter order so the preferred form is the factorized
quadratic/quartic forms. These factorized parts are present in r.DesignData. For example, the
numerator21 can be accessed using r.DesignData.Numerator21.

1 = rfplot(Sparam,2,1);

7-185

7 RF Toolbox Examples

20 T T T T T T T T T
dB(s

21}

-40

-60

fMagnitude (dB)

-80

-100

_1 ZD 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (Hz)

Amplitude response of filter at specified frequency

freq = 2/(2*pi);
hold on;
setrfplot('noengunits', false);

Note: To use rfplot and plot on the same figure use setrfplot. Type 'help setrfplot’ in command
window for information.

plot(freg*ones(1,101),linspace(-120,20,101));
setrfplot('engunits', false);

[~,freq_index]= min(abs(frequencies-freq));
datatip(l, 'DataIndex',freq_index);

7-186

Design, Visualize and Explore Inverse Chebyshev filter - |

20 T T T T T T T T T
dB(s

21}

X 0.318
Y -36.5902

-60

fMagnitude (dB)

-80

100 | 1

_1 ZD 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (Hz)

Using the datatip, the magnitude at 2 rad/sec is found to be -36.59 dB.

Evaluate the exact value at 2 rad/sec.
S freq = sparameters(r,freq);

As freq = 20*loglO(abs(rfparam(S_freq,2,1)));
sprintf('Amplitude response at 2 rad/sec is %d dB',As freq)

ans =
"Amplitude response at 2 rad/sec is -3.668925e+01 dB'

Calculate stopband frequency at As

Fs = r.DesignData.Auxiliary.Wx*r.PassbandFrequency;
sprintf('Stopband frequency at -%d dB is: %d Hz',As, Fs)

ans =
'Stopband frequency at -50 dB is: 3.500241e-01 Hz'

References

[1] Ellis, Michael G. Electronic Filter Analysis and Synthesis. Boston: Artech House, 1994.

7-187

7 RF Toolbox Examples

Design, visualize and explore Inverse Chebyshev filter - 1l

This example shows how to design a fourth-order inverse Chebyshev low-pass filter with stopband
frequency of 10000 rad/sec, and epsilon of 0.01 (please see the reference section) using rffilter.
This rffilter could be used in a circuit orin a rfbudget object.

The rffilter object is used to design a RF filter. A filter requires a minimum set for parameters to
completely define it.

The parameters to design an inverse Chebyshev filter can be one of the following:

+ Filter order, Passband frequency, Passband and Stopband Attenuation
» Passband and Stopband frequencies, Passband and Stopband Attenuation
» Filter order, Stopband frequency, Stopband Attenuation

Design Filter

N = 4; % Filter order

Fs = 1000/ (2*pi); % Stopband frequency
epsilon = 0.01;

Rs = 10*1oglO((l+epsilon™2)/epsilon”2); % Stopband attenuation

Use the first set of parameters to define the filter.
r = rffilter('FilterType', 'InverseChebyshev', 'ResponseType', 'Lowpass',
'"Implementation', 'Transfer function', 'FilterOrder',N,

'PassbandFrequency',Fs, 'PassbandAttenuation',Rs,
'StopbandAttenuation',Rs);

Note: Alternative, you can also use the third set of parameters to design the same filter:
r = rffilter('FilterType', 'InverseChebyshev', 'ResponseType', 'Lowpass',
'"Implementation', 'Transfer function', 'FilterOrder',N,
'StopbandFrequency',Fs, 'StopbandAttenuation',Rs);

The limitation of this parameter set is that it assumes the passband attenuation to be fixed at
10*log10(2) dB.

Visualize magnitude response, phase response, and phase delay of filter

frequencies = linspace(0,2*Fs,1001);
rfplot(r, frequencies);

7-188

Design, visualize and explore Inverse Chebyshev filter - I

Magnitude (dB)

-40

-60

-60

=70

-80

-390

s21 vs. Frequency

50

100

150 200 250 300 350
Frequency (Hz)

7-189

7 RF Toolbox Examples

] & 58

s21 vs. Frequency

) ST

0 50 100 150 200 250 300
Frequency (Hz)

7-190

Design, visualize and explore Inverse Chebyshev filter - I

bl Bl 2]

Phase Delay s21 vs. Frequency

T T T

Phase delay (s)
B

---‘----—--““‘--_

1 i i i i i i
0 50 100 150 200 250 300 350

Frequency (Hz)

Optionally, you can also use Signal Processing Toolbox to visualize the analog filter using:
freqs(numerator{2,1},denominator)

Find zeros, poles, and gain

[z,p,k] = zpk(r);

You can obtain zeros, poles, and gain of Transfer function (S21) by:

format long g
zeros 21 = z{2,1}

zeros 21 = 4x1 complex
0 + 1082.392200292391
0 - 1082.392200292391
0 + 2613.125929752751
0 - 2613.125929752751
poles 21 = p % Same denominator for S11, S12, S21 and S22
poles 21 = 4x1 complex
-171.158733950657 + 476.0966944641311

7-191

7 RF Toolbox Examples

7-192

-171.158733950657 - 476.0966944641311
-504.530434776367 + 240.7864808321841
-504.530434776367 - 240.7864808321841

k 21 = k{2,1}

k 21 =
0.00999950003749688

View transfer function in factorized form

View these factor forms directly from the filter r.
disp('Numerator of Transfer function as factors:');
Numerator of Transfer function as factors:
r.DesignData.Numerator2l

ans = 2x3

1
0.00999950003749688

1171572.87525381
68280.8572899443

[oNo)

disp('Denominator of Transfer function as factors:');
Denominator of Transfer function as factors:
r.DesignData.Denominator

ans = 2x3

1 342.317467901314 255963.374687264
1 1009.06086955273 312529.088967178

Alternatively, use |zpk| from Control System Toolbox to view the transfer function in factorized form.

G s = zpk(zeros_21,poles 21,k 21)

G s
0.0099995 (s”2 + 1.172e06) (s”2 + 6.828e06)

(s™2 + 1009s + 3.125e05) (s”2 + 342.3s + 2.56e05)

Continuous-time zero/pole/gain model.

References

[1] Paarmann, L. D. Design and Analysis of Analog Filters: A Signal Processing Perspective. SECS
617. Boston: Kluwer Academic Publishers, 2001.

Design Matching Networks for Passive Multiport Network

Design Matching Networks for Passive Multiport Network

This example shows how to design matching networks for 16-port passive network at 39 GHz for 5G
mmWave systems. Matching networks are designed independently for each port, and each generated
matching network is intended to function between two 1-port terminations.

Design Multiport Passive Network

Compute the S-Parameters of a patch antenna array designed at 39 GHz. Load the
sparams_patchArray.mat file. The s params circ array function is obtained from the
supporting file designmultiport.mlx.

Fcenter = 39e9;

load('sparams patchArray.mat')
Sparam_array = s _params_circ_array;
show(patchArray)

view([90 0])

rectangularArray of patchMicrostripCircular antennas

151 1

10f 1

z (mm}
[}

] matal
¥ (mm})

Determine the index corresponding to the center frequency.

freq
fIndex

Sparam_array.Frequencies;
find(freq == Fcenter);

7-193

7 RF Toolbox Examples

7-194

Create Matching Networks

Generate matching networks for each corresponding port independently, with a Loaded Q of 20 and
configure the topology to 'Pi'. This Q-factor is aligned with half power bandwidth of the patch antenna
array, which is approximately 2 GHz.

Define the number of ports in the network and specify the termination impedance.

numport = s params_circ_array.NumPorts;
yAl = 50;

loadedQ = 20;

topology = 'Pi';

for i = 1 : numport
% reflection coefficient/Sii

gam_array = s params_circ_array.Parameters(i,i, fIndex);
% Load impedance

Zout = gamma2z(gam array);

% Matching networks generation

match net(i) = matchingnetwork('SourceImpedance', ZT,

'LoadImpedance', Zout, 'CenterFrequency', Fcenter,
'LoadedQ', loadedQ, 'Components', topology);
end

The source is connected to the component located on left of the matching network circuit and the
load is connected to the component connected to the right of the matching network circuit. For the
matching networks generated, the source is terminated with ZT (50 Ohm) and the load impedance is
the impedance seen at the ith-port given by Zout.

View and Select Circuits

Select a topology from the sixteen matchingnetwork objects. To get an overview of the available
circuits, see circuitDescriptions function.

In this example, a Shunt C-Series L-Shunt C topology is used. If this topology is not available in your
network, use the best available matching network circuit.

selectedCircuits
cIndex

repmat(circuit,1,numport);
zeros(1l,numport);

View the list of circuits generated.

for i 1l:numel(match net)
C circuitDescriptions(match net(i));
% Perform a text search to choose the circuit with Shunt C-Series L-Shunt C topology
Index = strcmp(c.componentlType, "Shunt C") & ...
strcmp(c.component2Type, "Series L") & ...
strcmp(c.component3Type, "Shunt C");
if any(Index)
% ShuntC-SeriesL-ShuntC topology
cIndex (i) = find(Index, 1, 'first');
selectedCircuits(i) = match net(i).Circuit(cIndex(i));
else
% Best available matchingnetwork
selectedCircuits(i) = match net(i).Circuit(1);
end
selectedCircuits(i).Name = "N"+i;

end

Design Matching Networks for Passive Multiport Network

To view the performance of a selected matching network circuit, use rfplot. For instance, to plot
the performance of the first matching network for the circuit with Shunt C-Series L-Shunt C topology
type this command.

rfplot(match net(1),freq,cIndex(1l));

Performance for Circuit 3 ("auto_1") (Passed)
0f =~ -
Circuit 3: |gammain|, dB
-2 ! — — —Circuit 3: |Gt|, dB

Aok -

Magnitude (dB)

A2

16 F

A8

34 35 36 37 38 3@ 40 41 42 43 44
Frequency (GHz)

Add Matching Network Circuits to 16-Port Network
Create Circuit Object

Create a circuit object and an n-port object for the 16-port network.

ckt
array_net

circuit('patchArray');
nport(Sparam_array);

In this example, number of circuit nodes are shown as 17, as nodes 1 through 16 will be used for
adding the matching networks.

cktnodes = (l+numport): (numport+numport);
Add the n-port object to circuit object.
add(ckt, cktnodes, array net);

View parent nodes of the 16-port network.

disp(array_net)

7-195

7 RF Toolbox Examples

nport: N-port element

NetworkData: [1x1 sparameters]
Name: 'Sparams'
NumPorts: 16
Terminals: {1x32 cell}
ParentNodes: [17 18 19 20 21 22 23 24 252627 2829 303132000000000000000

ParentPath: 'patchArray'

An illustration of the circuit object with 16-port n-port is provided.

7-196

Design Matching Networks for Passive Multiport Network

Ckt object with
16-port nport

18 — — 26

19 —— — 27

20 — — 28

16 port

21 —— — 29

22 —— — 30

23 —— — 31

24 —— —— 32

Initialize the ports.
ports = cell(1,numport);

Add each matching network circuit to its corresponding port one at a time. Port numbers for
corresponding matching network circuit are also generated.

7-197

7 RF Toolbox Examples

for i=1:1length(selectedCircuits)
add(ckt, [i, O, i+numport, 0], selectedCircuits(i),
{'pl+', 'pl-', 'p2+', 'p2-'});
ports{i} = [i, 0O];
end
% ports = arrayfun(@(x) [x 0],1:10, 'UniformOutput', false);

Use the setports function to define the ports for each of the circuits.
setports(ckt,ports{:});

An illustration of the circuit object with n-port and matching network circuits are provided.

7-198

Design Matching Networks for Passive Multiport Network

Ckt object with nport and matching

network circuits

PR N Y
P~ To 0
> 2 N 2B
P= 1o 0

3 19
03 N3

0 0
PRl B R
P To 0

5 21
05 N5

0 0

6 22
06 NG

0 0

7 23
07 N7

0 0
s 121 ng 22
e 0

16 port

25| o]
0 o | P
%5 1 N0 22 Lo
0 o | P
27 11

N11 011
0 0
28 w2 A s
0 o | P
29 13

N13 013
0 0
30 14

N14 014
0 0
31 15

N15 015
0 0
2 1 v 2 e
0 o |F

Matching network circuits

Node labels
Port labels

7-199

7 RF Toolbox Examples

Generate and Plot S-Parameters

Generate and plot the S-Parameters of the passive 16-port matching network.
Sparam = sparameters(ckt, freq);

Plot Frequency Responses

Plot the frequency response of the 16-port network before matching.

figure; rfplot(s params circ_array); legend off

Magnitude (dB)

—\Eﬂ i i i i i i i i i
34 35 36 37 38 39 40 41 42 43 44

Frequency (GHz)

Plot the frequency response of the 16-port network after matching.

figure; rfplot(Sparam); legend off

7-200

Design Matching Networks for Passive Multiport Network

Magnitude (dB)

34 35 36 37 38 3@ 40 41 42 43 44
Frequency (GHz)

7-201

7 RF Toolbox Examples

Frequency Sweeping the RF Budget Analysis

7-202

This example shows how to sweep through frequency-dependent properties of the elements in an RF
Budget Analysis.

First, use the nport and amplifier objects to specify the 2-port RF elements in the design. Then build
an RF budget element by cascading the elements together into an RF system with rfbudget.

Building the Elements of the RF Budget Cascade

First build and parameterize each of the 2-port RF elements. Then use rfbudget to cascade the
elements with input frequency 2.1 GHz, input power -30 dBm, and input bandwidth 45 MHz. This
example cascades a filter and an amplifier.

fl = nport('RFBudget RF.s2p', 'RFBandpassFilter');

al = amplifier('Name', 'RFAmplifier"',
'Gain',11.53,
"NF',1.53,
'0IP3',35);

b = rfbudget('Elements',[fl al],
'"InputFrequency',2.1e9,
"AvailableInputPower',-30,
'SignalBandwidth',45e6);

Read

Read frequency-dependent Noise Figure (NF) values of the amplifier from the data-sheet. A similar
approach can be followed if the Output third-order intercept (OIP3) or Gain is frequency-dependent.

% Inputs from the data-sheet
freq_datasheet = [1.98;1.99;2.0;2.01;2.02;2.03;2.04;2.05;2.06;2.07;2.08;....
2.09;2.10].*1e9;

NF datasheet = [1.0000;1.0442;1.0883;1.1325;1.1767;1.2208;1.2650;1.3092;...
1.3533;1.3975;1.4417,;1.4858;1.53001];

% Interpolate the amplifier NF data based on existing filter frequencies
Freq = fl.NetworkData.Frequencies;
RFAmplifier NF = interpl(freq_datasheet,NF datasheet,Freq);

Plot RF Budget Results Versus Input Frequency

Loop over the desired frequencies, by setting NF of the RF Amplifier element in the rfbudget object.

TotalNF = zeros(size(Freq));
for i = 1:numel(Freq)
b.InputFrequency = Freq(i);

% Adjust frequency-dependent NF of the RF Amplifier
elems(2).NF = RFAmplifier NF(1i);

% Compute NF of the cascade
TotalNF(i) = b.NF(end);

end

plot(Freq/1e9,TotalNF);

Frequency Sweeping the RF Budget Analysis

grid on;

xlabel('Frequency (GHz)")

ylabel('NF (dB)"')

title('Noise Figure vs. Input Frequency')

MNoise Figure vs. Input Frequency

140 T

120 _

100 _

NF (dB)

40 f .

0 . . : .
95 2 205 2.1 215 2.2 225

Frequency (GHz)

=

7-203

7 RF Toolbox Examples

Using Rational Object to Fit S-parameters

This example shows how to use the rational object to create a rational fit to S-parameter data, and
the various properties and methods that are included in the rational object.

Create rational object

Read in the sparameters, and create the rational object from them. The rational function
automatically fits all entries of the S-parameter matrices.

S = sparameters('sawfilter.s2p')

S =
sparameters: S-parameters object
NumPorts: 2
Frequencies: [334x1 double]
Parameters: [2x2x334 double]
Impedance: 50

rfparam(obj,i,j) returns S-parameter Sij

_1
]

rational(S)

r =
rational with properties:

NumPorts: 2
NumPoles: 33
Poles: [33x1 double]
Residues: [2x2x33 double]
DirectTerm: [2x2 double]
ErrDB: -44.6081

With the default settings on this example, the rational function achieves an accuracy of about -26 dB,
using 30 poles. By construction, the rational object is causal, with a non-zero direct term.

Compare fit with original data

Generate the frequency response from the rational object, and compare one of the entries with the
original data.

resp = freqresp(r, S.Frequencies);

plot(S.Frequencies, real(rfparam(S, 1, 1)),
S.Frequencies, real(squeeze(resp(1l,1,:))))

7-204

Using Rational Object to Fit S-parameters

D4 T T T T T

0.2r]

18 2 22 2.4 26 28 3
%10

Limit number of poles

Redo the fit, limiting the number of poles to a maximum of 5. The rational object may use fewer poles
than specified. Notice that the quality of the fit is degraded as opposed to the original 30-pole fit.

r5 = rational(S, 'MaxPoles', 5)

r5 =
rational with properties:

NumPorts: 2
NumPoles: 5
Poles: [5x1 double]
Residues: [2x2x5 double]
DirectTerm: [2x2 double]
ErrDB: -3.9805

resp5 = freqresp(r5, S.Frequencies);
plot(S.Frequencies, real(rfparam(S, 1, 1)), ...
S.Frequencies, real(squeeze(resp5(1,1,:))))

7-205

7 RF Toolbox Examples

0.5 T T T

18 2 22 2.4 26 28 3
%10

Tighten target accuracy

Redo the fit, asking for a tighter tolerance (-60dB), Notice that the fit is significantly improved,
particularly in the stopbands of the sawfilter.

rgood = rational(S, -60)

rgood =
rational with properties:

NumPorts: 2
NumPoles: 76
Poles: [76x1 double]
Residues: [2x2x76 double]
DirectTerm: [2x2 double]
ErrDB: -50.9108

respgood = freqresp(rgood, S.Frequencies);
plot(S.Frequencies, real(rfparam(S, 1, 1)), ...
S.Frequencies, real(squeeze(respgood(1l,1,:))))

7-206

Using Rational Object to Fit S-parameters

0.4

0.2r

2.2

2.4

2.6

28

%10

7-207

7 RF Toolbox Examples

Design Two-Stage Low Noise Amplifier Using Microstrip
Transmission Line Matching Network

This example shows how to use the RF Toolbox™ microstrip transmission line element to design two-
stage low noise amplifier (LNA) for wireless local area network (WLAN) with an input and the output
matching network (MNW) to maximize the power delivered through a 50-ohm load and the system.

Designing an input and output MNW is an important part of the amplifier design. The amplifier in this
example has high gain and low noise. To minimize parasitic effect, this example uses the microstrip
transmission line MNW with a single stub.

_______________ LNA1 LNA2 .

] 1

! TLZ? | TL3

Hn p s—]

| :

1 1

| 1

I 1

i L1 i TL4

i Open E Open

L oo oo oo o o o o A i U —
Input Matching Qutput Matching
Network Network

Define Microstrip Transmission Line Parameters

The microstrip transmission line parameters are chosen as follows.

* Physical Height of conductor or dielectric thickness — 1.524 mm
* Relative permittivity of dielectric — 3.48 (F/m)

* Loss angle tangent of dielectric — 0.0037

* Physical thickness of microstrip transmission line — 3.5 um

Design Input Matching Network Using Microstrip Transmission Line
The input matching network consists of one shunt stub and one series microstrip transmission line.

Create an input shunt stub microstrip transmission line with the physical length of 8.9 mm.

TL1 = txlineMicrostrip('Width',3.41730e-3, 'Height',1.524e-3, 'EpsilonR',3.48, 'LossTangent',0.0037
'LineLength',8.9e-3, 'Thickness',0.0035e-3, 'StubMode', 'Shunt', 'Termination', 'Open');

Create an input series microstrip transmission line with the physical length of 14.7 mm.

TL2 = txlineMicrostrip('Width',3.41730e-3, 'Height',1.524e-3, 'EpsilonR',3.48, 'LossTangent',0.003
'LineLength',14.7e-3, 'Thickness',0.0035e-3);

7-208

Design Two-Stage Low Noise Amplifier Using Microstrip Transmission Line Matching Network

Create and Extract Amplifier Object

Create and extract an amplifier object from the frequency dependent S-parameter data available in
the specified file.

ampl = nport('f551432p.s2p');

Define the frequency range.

freq = 2e9:10e6:3e9;

Create a two-stage amplifier and plot its S-parameter.

casamp = circuit([ampl,clone(ampl)], 'amplifiers'); % amplifier ciruit without MNW.
Plot the S-Parameter over the frequency range from 2 - 3 GHz.

S2 = sparameters(casamp,freq);

Design Output Matching Network Using Microstrip Transmission Line
The output matching network consists of one shunt stub and one series microstrip transmission line.

Create an output series microstrip transmission line with the physical length of 22.47 mm.

TL3 = txlineMicrostrip('Width',3.41730e-3, 'Height',1.524e-3, 'EpsilonR',3.48, 'LossTangent',0.003
‘LineLength',22.47e-3, 'Thickness',0.0035e-3);

Create an output shunt stub microstrip transmission line with the physical length of 5.66 mm.

TL4 = txlineMicrostrip('Width',3.41730e-3, 'Height',1.524e-3,'EpsilonR',3.48, 'LossTangent',0.00
'LineLength',5.66e-3, 'Thickness',0.0035e-3, 'StubMode"', 'Shunt', 'Termination', 'Open');

Plot Input Reflection Coefficients of Two-Stage LNA

To verify the simultaneous conjugate match at the input of the amplifier, plot the input reflection
coefficients in dB for the amplifier circuit with and without a matching network.

Cascade the circuit elements by adding the input and the output MNW to the two-stage amplifier.

Cc = circuit([TL1, TL2,clone(ampl),clone(ampl),TL3, TL4]); % two-stage LNA with MNW

Plot the S-parameters and analyze the amplifier with and without the matching networks over the
frequency range of 2.4 - 2.5 GHz.

figure

S3 = sparameters(c,freq);

rfplot(S2,1,1)

hold on;

rfplot(S3,1,1)

legend('|S11| of Two-Stage LNA Without MNW','|S11l| of Two-Stage LNA with MNW');
title('Input Reflection Coefficients of Two-Stage LNA');

grid on;

7-209

7 RF Toolbox Examples

Input Reflection Coefficients of Two-Stage LNA

A0

A2

Magnitude (dB)
do

11| of Two-Stage ithout

5 fT Stage LMNA Without MWW
11| of Two-Stage wit '
5 fT Stage LMA with MNW

L

-14

The calculated input return loss for the two-stage LNA with the input MNW is -13.2 dB.

21

22 23 24 25 26 27 28 29
Frequency (GHz)

Plot Output Reflection Coefficients of Two-Stage LNA

To verify the simultaneous conjugate match at the output of the amplifier, plot output reflection

coefficients in dB for both the two-stage LNA with and without a MNW.

figure

rfplot(S2,2,2)

hold on;

rfplot(S3,2,2)

legend('|S22| of Without MNW','|S22| of With MNW');
title('Output Reflection Coefficients of Two-Stage LNA');

grid on;

7-210

Design Two-Stage Low Noise Amplifier Using Microstrip Transmission Line Matching Network

Output Reflection Coefficients of Two-Stage LNA

|S22| of Without MNW
|S22] of With MNW

Magnitude (dB)
©

10 \ S i
y '(l';'

A1F ™~ g 1

__12 i i i i i i i i i
2 21 22 2.3 2.4 2.5 26 27 28 29 3

Frequency (GHz)
The calculated output return loss for the two-stage LNA with the output MNW is 11.5 dB.

Plot Gain and Input Reflection Coefficients of Cascaded LNA

To verify the simultaneous conjugate match at the input and output of the amplifier, plot the input
reflection coefficient and the gain parameters in dB for the two-stage LNA with the MNW.

figure;
rfplot(S3,1,1)
hold on;
rfplot(S3,2,1)

7-211

7 RF Toolbox Examples

40

30 r

20

Magnitude (dB)

A0

10r

dB(s,,)
— dB(s,,)

The calculated amplifier gain, S21 is 34.5 dB, and the input reflection coefficient, S11 is -13.1 dB.

26 27 28 29
Frequency (GHz)

Calculate and Plot Complex Load and Source Reflection Coefficients

Calculate and plot all the complex load and source reflection coefficients for simultaneous conjugate
match at all measured frequency data points that are unconditionally stable. These reflection
coefficients are measured at the amplifier interfaces.

figure

smithplot(S3,1,1, 'LegendLabels’', '"Measured S11')

7-212

Design Two-Stage Low Noise Amplifier Using Microstrip Transmission Line Matching Network

Measured 511 |

+1

+j_2

+ju.ﬁf/F | T

Calculate Ampifier Noise Figure

Use an rfbudget object to calculate the amplifier noise figure.

b = rfbudget(
'"Elements', [TL1 TL2 ampl clone(ampl) TL3 TL4],
'"InputFrequency',2.45e9,
"AvailableInputPower',0,
'SignalBandwidth',2e9,
'Solver', 'Friis',
'AutoUpdate’',1);

rfplot(b, 'NF")

7-213

7 RF Toolbox Examples

7-214

Noise Figure
Friis Analysis

Cascade
1.1
1.5 . 1.3
1.5
14 1.8
[e)
=
L
< 05
D E

15 ’ 1.3

PR

2

Cascade

Input Frequency (GHz)

The amplifier noise figure is calculated as 0.7 dB.

Reference

[1] Maruddani, B, M Ma’sum, E Sandi, Y Taryana, T Daniati, and W Dara. “Design of Two Stage Low
Noise Amplifier at 2.4 - 2.5 GHz Frequency Using Microstrip Line Matching Network Method.”
Journal of Physics: Conference Series 1402 (December 2019): 044031.

RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF

RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2
and NF

This example shows how to use the rfbudget object's harmonic balance solver to analyze a low-IF
(intermediate frequency) receiver RF budget for second-order intercept point (IP2), the second-order
intercept point and to compute a more accurate noise figure (NF) that correctly accounts for system
nonlinearity and noise-folding.

Use amplifier and modulator objects to construct the 2-port RF elements in a low-IF receiver
design, along with their output second-order intercept point (OIP2) specifications. You can turn off
the default ideal image reject and channel select filtering in the modulator with the ImageReject
and ChannelSelect logical name-value pairs.

Compute RF budget results by cascading the elements together into an RF system with rfbudget.
The rfbudget object enables design exploration and visualization at the MATLAB command-line. It
also enables automatic RF Blockset model and measurement testbench generation.

al = amplifier('Name', 'RFAmplifier',
'Gain',11.53,
'NF',1.53,
'0IP2',35);

d = modulator('Name', 'Demodulator',
'Gain', -6,
"NF',4, ...
'0IP2',50, ...
'LO0',2.03e9,
'ConverterType', 'Down',
'ImageReject', false,
'"ChannelSelect', false);

a2 = amplifier('Name', 'IFAmplifier',
'Gain', 30,
"NF',8, ...
'0IP2',37);

b = rfbudget('Elements',[al d a2],
'InputFrequency',2.1e9,
"AvailableInputPower',-30,
'SignalBandwidth',b45e6)

b:
rfbudget with properties:

Elements: [1x3 rf.internal.rfbudget.RFElement]
InputFrequency: 2.1 GHz
AvailableInputPower: -30 dBm
SignalBandwidth: 45 MHz
Solver: Friis
AutoUpdate: true

Analysis Results

OutputFrequency: (GHz) [2.1 0.07 0.07]
OutputPower: (dBm) [-18.47 -24.47 5.53]
TransducerGain: (dB) [11.53 5.53 35.53]
NF: (dB) [1.53 1.843 4.793]

7-215

7 RF Toolbox Examples

IIP2: (dBm) []
0IP2: (dBm) []
IIP3: (dBm) [Inf Inf Inf]
OIP3: (dBm) [Inf Inf Inf]
SNR: (dB) [65.91 65.6 62.65]

Why are OIP2 and 1IP2 Empty in the Results?

The default Solver property of the rfbudget object is 'Friis', an equivalent baseband approximation
which is unable to compute IP2. To see the IP2 results, you can set the Solver property of the
budget object to 'HarmonicBalance'. This performs nonlinear circuit analysis to compute the steady-
state operating point, from which it is possible to compute IP2.

You can also select the 'HarmonicBalance' solver at rfbudget construction time by passing in a
Solver name-value pair after the other positional or name-value pair arguments, e.g.

b = rfbudget([al d a2],2.1e9,-30,45e6, 'Solver', 'HarmonicBalance')

In general, the 'HarmonicBalance' solver is not as fast as the 'Friis' solver and does not compute
noise figure (NF) or signal-to-noise ratio (SNR).
b.Solver = 'HarmonicBalance'

b:
rfbudget with properties:

Elements: [1x3 rf.internal.rfbudget.RFElement]
InputFrequency: 2.1 GHz
AvailableInputPower: -30 dBm
SignalBandwidth: 45 MHz
Solver: HarmonicBalance
WaitBar: true
AutoUpdate: true
Analysis Results
OutputFrequency: (GHz) [2.1 0.07 0.07]
OutputPower: (dBm) [-18.47 -24.47 5.53]
TransducerGain: (dB) [11.53 5.53 35.53]
NF: (dB) [1.53 4.7 6.487]
ITP2: (dBm) [23.47 44.47 -4.581]
0IP2: (dBm) [35 50 30.95]
ITIP3: (dBm) [Inf Inf 19.45]
0IP3: (dBm) [Inf Inf 54.98]
SNR: (dB) [65.91 62.74 60.96]

The rfbudget display above shows the results of the cascade computed by the 'HarmonicBalance'
solver. Comparing them to the 'Friis' results, the vector properties showing the OutputPower and
TransducerGain along the cascade match well.

As expected, the OIP2 and IIP2 properties have nonempty values. In addition, the output third-order
intercept point (OIP3) and input third-order intercept point (IIP3) properties have changed. The 'Friis'
solver is unable to capture the nonlinear bleeding through the IP2 properties of the cascade to affect
the third-order intercept point. Mathematically, this happens because cascading two second-order
polynomials results in a polynomial with a third-order term.

7-216

RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF

Similarly, the NF results of Harmonic Balance are different (and more accurate) than the Friis results
because Harmonic Balance correctly captures the noise folding effects of nonlinearities.

Verifying HB Results Using RF Blockset Circuit Envelope Simulation

You can verify the harmonic balance NF, IP2 and IP3 results by exporting the budget to an RF
Blockset testbench model using the following command:

exportTestbench(b)

To verify NE double-click on the RF Measurement Unit to open the mask, then select NF from the
Measured quantity pulldown. Then run the model. This verifies the Harmonic Balance NF calculation.

RF Measurement Testbench

Open the Block Parameters dialog of the RF Measurement Unit
block for measurement-specific parameters and instructions.

NF (dB) > 6.485
tStimulus RF Measurement Unit
Response —— RF Budget
Gain 35.53 dB
NF 4.793 dB
OIP3 54.98 dBm
IIP3 19.45 dBm
Device
In Under Out
Test

To verify IP2, double-click on the RF Measurement Unit to open its mask, then select IP2 from the
Measured quantity pulldown.

7-217

7 RF Toolbox Examples

7-218

Block Parameters: Testbench RF to RF

RF Measurement Unit (mask) (link)

Measures RF properties of a system.

[] simulate noise (both stimulus and DUT internal)

Measured quantity: IP2
IP Type: Output referred
Parameters Instructions

Input power amplitude (dBm):

ilgk/k...- A

-00.0 60.0

:

Input frequency (Hz): |2.1-e9

Output frequency (Hz): | 70e6

Baseband bandwidth (Hz): |45-eEn

Ratio of test tone frequency to baseband bandwidth: | 1/8

Cancel Help

Apply

Also uncheck the Simulate noise checkbox. Then run the model.

RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF

RF Measurement Testbench

Open the Block Parameters dialog of the RF Measurement Unit
block for measurement-specific parameters and instructions.

| Stimulus

RF Measurement Unit

OIP2 (dBm)

hJ

Response ——

To verify IP3, select IP3 from the Measured quantity pulldown and run the model again.

In

Device
Under Out
Test

RF Measurement Testbench

Open the Block Parameters dialog of the RF Measurement Unit
block for measurement-specific parameters and instructions.

—Stimulus

RF Measurement Unit

30.95

RF Budget

Gain 35.53 dB
NF 4,793 dB
OIPF3 54.98 dBm
IIP3 19.45 dBm

hJ

OIP3 (dBm)

Response|

In

Device
Under Out
Test

54.78

RF Budget

Gain 35.53 dB
NF 4,793 dB
OIPF3 54.98 dBm
IIP3 19.45 dBm

7-219

7 RF Toolbox Examples

Verifying HB results with RF Blockset Harmonic Balance

Rather than using the large machinery of circuit envelope and the RF Testbench, it is possible to
build a simpler model that computes the IP2 and IP3 using two tones and harmonic balance. Open the
model 0ipHB. s1x found in the MATLAB/Examples folder. Simulate the model.

259

Tonel = fcl Demad 75

Tone2 = fc2
MW In [>Dut In @ Dut In [>Dut RF sL—hn Out pf___-259
Lo 259

Zsource Calculate Powers -102.

¥

RFAmplifisr IFAmplifier -102.

é Zload Carmrier Powers {dBm)

RF p—
]
+
| B power OIP2 (dBm)
— — Gnd
= IP3 — 54.08
OIF3 (dBm)

. Intercept Points
Copyright 2010-2019 The Math\Waorks, Inc.

7-220

Analysis of Coplanar Waveguide Transmission line in X band application

Analysis of Coplanar Waveguide Transmission line in X band
application

This example shows how to analyze a coplanar waveguide (cpw) transmission line for X-band
applications. CPW transmission line consists of a central metal strip separated by a narrow gap from
two ground planes on either side. The dimensions of the center strip, the gap, the thickness, and
permittivity of the dielectric substrate determine the characteristic impedance, group delay, and
noise. The gap in the cpw is usually very small and supports electric fields primarily concentrated in
the dielectric.

Define Parameters

The cpw transmission line has 200 mm slot width, 1600 mm conductor width, 635 mm height, 0.005
loss tangent, and 17 um of thickness. This example uses two different dielectric constants to simulate
the cpw transmission line. The dielectric constant values are 2.323 and 9.2.

cptxlinel = txlineCPW('EpsilonR',2.323, 'SlotWidth',200e-6, 'ConductorwWidth',...
1600e-6, 'Height',635e-6, 'LossTangent',0.005, 'Thickness',17e-6);
cptxline2 = txlineCPW('EpsilonR',9.2, 'SlotWidth',200e-6, 'ConductorWidth',...

1600e-6, 'Height',635e-6, 'LossTangent',0.005, 'Thickness',17e-6);
% X band Frequency range 8 to 12GHz
freq = 5e€9:10e6:14e9;

Plot Input Return Loss

The results for two different dielectric substrates indicates the impedance bandwidth increases with a
lower dielectric constant. The measurement results are for a frequency range of 5 GHz to 14GHz, and
magnitude of S11 < 10 dB.

figure;

spl = sparameters(cptxlinel,freq);

sp2 = sparameters(cptxline2,freq);
rfplot(spl,1,1);hold on;
rfplot(sp2,1,1);

title('Frequency Vs S-Parameters');
legend('EpsilonR 2.323", '"EpsilonR 9.2');
grid on;

7-221

7 RF Toolbox Examples

Frequency Vs S-Parameters

D T T T T T T T T
EpsilonR 2.323
EpsilonR 9.2
101 0 7
- 'W\
201 \ . B T .
\ ,.-'r T z,f:"-;_f-
m LY I|II' -~ |II
= 30 \ -
Jub} Vo
ha] |I I|
= V|
%—, A0 F I| |I |II i
[| [Il'
= \| |
I |
B0 r ' ||| 1
60 v i
—?D i i i i i i i i
5 6 7 8 9 10 11 12 13 14
Frequency (GHz)
Group Delay

Group delay variations versus frequency is an essential factor when using phase modulation and high
data rates. This impairment causes distortion and degradation in wideband applications. In a cpw
transmission line the group delay increases with increase in the frequency for both dielectric

substrates.

gdl = groupdelay(cptxlinel, freq, 'Impedance',50);
gd2 = groupdelay(cptxline2,freq, 'Impedance',50);
figure;plot(freq,gdl);hold on;

plot(freq,gd2);

title('Frequency Vs Group delay');
legend('EpsilonR 2.323"', 'EpsilonR 9.2');
xlabel('Frequency');

ylabel('Group delay');

grid on;

7-222

Analysis of Coplanar Waveguide Transmission line in X band application

8.5

Group delay
o
=] o

o
o

4.5

3.5

Noise Figure

«10°1 Frequency Vs Group delay
EpsilonR 2.323 |-
B EpsilonR 9.2
3 8 g 10 11 12 13
Frequency «10°

The noise is generated primarily within the input stages of the receiver system itself. Cascaded stages
are not noisier than others. The noise generated at the input and amplified by the receiver's full gain
amplifier greatly exceeds the noise generated further along the receiver chain. In the results using

both lower and higher dielectric constant, noise figure increases with increasing frequency. The
variation is very less over the frequency range when using a lower dielectric constant.

nfl
nf2

noisefigure(cptxlinel, freq);
noisefigure(cptxline2,freq);

figure;plot(freq,nfl);hold on;

plot(freq,

nf2);

title('Frequency Vs Noise Figure');
legend('EpsilonR 2.323"', 'EpsilonR 9.2');

xlabel('Frequency');
ylabel('Noise Figure');

grid on;

7-223

7 RF Toolbox Examples

Frequency Vs Moise Figure

0.14

012

0.1

=
=
@

0.06

Moise Figure

0.04

0.02

EpsilonR 2.323
Epsilonk 9.2

—

.-‘-'..

.-'-' -

7 8 9 10 11 12 13 14

Frequency x10%

Characteristic Impedance

Relative permittivity for a homogeneous dielectric affects the characteristic impedance of cpw
transmission line. You can compute this approximately by using the electrical model of the cpw to
clarify impedance behavior along the frequency band. Characteristic impedance determines the
amount of power transfer and attenuation effect along the cpw transmission line. The characteristic
impedance of a transmission line is usually written as Z0. In the simulation, the resulting
characteristic impedance decreases with increasing frequency in both dielectric constants. With
lower dielectric constant impedance value is below 50 ohms, with higher dielectric constant

impedance value is above 50 ohms.

ChImpl
ChImp2

getZO(cptxlinel, freq);
getZO(cptxline2, freq);

figure; plot(freq,ChImpl);hold on;

plot(freq,ChImp2);

title('Frequency Vs Characteristics Impedance');

xlabel('Frequency');

ylabel('Characteristics Impedance');
legend('EpsilonR 2.323"', 'EpsilonR 9.2');

grid on;

7-224

Analysis of Coplanar Waveguide Transmission line in X band application

Frequency Vs Characteristics Impedance

65 T

EpsilonR 2.323
EpsilonR 9.2

45 1 7

Characteristics Impedance
£
—_

40 T

—_—

35 i i i i i i
5 G 7 8 9 10 11 12 13 14

Frequency x10%
Conclusion

In RF and microwave circuit design the dielectric permittivity of the substrate plays an important role
and requires precise evaluation over a broad range of frequencies. With the above simulation you see
that, lower dielectric constant gives wider bandwidth, lower noise figure, and lower group delay.

Reference:

Sova, M., and I. Bogdan. "Coplanar Waveguide Resonator Design for Array Antenna Applications." In
6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting
Service, 2003. TELSIKS 2003.,1:57 to 59. Serbia, Montenegro, Nis: IEEE, 2003.

7-225

	RF Objects
	RF Data Objects
	Overview
	Types of Data
	Available Data Objects
	Data Object Methods

	RF Circuit Objects
	Overview of RF Circuit Objects
	Components Versus Networks
	Available Components and Networks
	Circuit Object Methods

	RF Model Objects
	Overview of RF Model Objects
	Available Model Objects
	Model Object Methods

	RF Network Parameter Objects
	Overview of Network Parameter Objects
	Available Network Parameter Objects
	Network Parameter Object Functions

	Model an RF Component
	Create RF Objects
	Construct a New Object
	Copy an Existing Object

	Specify or Import Component Data
	RF Object Properties
	Set Property Values
	Import Property Values from Data Files
	Use Data Objects to Specify Circuit Properties
	Retrieve Property Values
	Reference Properties Directly Using Dot Notation

	Specify Operating Conditions
	Available Operating Conditions
	Set Operating Conditions
	Display Available Operating Condition Values

	Process File Data for Analysis
	Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters
	Extract M-Port S-Parameters from N-Port S-Parameters
	Cascade N-Port S-Parameters

	Analyze and Plot RF Components
	Analyze Networks in the Frequency Domain
	Visualize Component and Network Data
	Compute and Plot Time-Domain Specifications

	Export Component Data to a File
	Available Export Formats
	How to Export Object Data
	Export Object Data

	Basic Operations with RF Objects

	Export Verilog-A Models
	Model RF Objects Using Verilog-A
	Overview
	Behavioral Modeling Using Verilog-A
	Supported Verilog-A Models

	Export a Verilog-A Model
	Represent a Circuit Object with a Model Object
	Write a Verilog-A Module

	The RF Design and Analysis Tool
	The RF Design and Analysis Tool
	What is the RF Design and Analysis App?
	Open the RF Design and Analysis App
	The RF Design and Analysis Window
	The RF Design and Analysis App Workflow

	Create and Import Circuits
	Circuits in the RF Design and Analysis App
	Create RF Components
	Create RF Networks
	Import RF Objects into the RF Design and Analysis App

	Modify Component Data
	Analyze Circuits
	Export RF Objects
	Export Components and Networks
	Export to the Workspace
	Export to a File

	Manage Circuits and Sessions
	Working with Circuits
	Working with the RF Design and Analysis App Sessions

	Model an RF Network
	Overview
	Start the RF Design and Analysis App
	Create the Amplifier Network
	Populate the Amplifier Network
	Analyze the Amplifier Network
	Export the Network to the Workspace

	AMP File Format
	AMP File Data Sections
	Overview
	Denoting Comments
	Data Sections
	S, Y, or Z Network Parameters
	Noise Parameters
	Noise Figure Data
	Power Data
	IP3 Data
	Inconsistent Data Sections

	How Tos, Definitions, Algorithms
	Determining Parameter Formats
	Primary and Secondary Formats
	Determining Formats for One Parameter
	Determining Formats for Multiple Parameters

	RF Toolbox Examples
	Superheterodyne Receiver Using RF Budget Analyzer App
	Visualizing RF Budget Analysis Over Bandwidth
	Bandpass Filter Response
	MOS Interconnect and Crosstalk
	Bandpass Filter Response Using RFCKT Objects
	MOS Interconnect and Crosstalk Using RFCKT Objects
	Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-Port S-Parameters)
	Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational Function)
	Modeling a High-Speed Backplane (4-Port S-Parameters to Differential TDR and TDT)
	Modeling a High-Speed Backplane (Rational Function to a Simulink® Model)
	Modeling a High-Speed Backplane (Rational Function to a Verilog-A Module)
	Using 'NPoles' Parameter With rationalfit
	Using 'Weight' Parameter With rationalfit
	Using 'DelayFactor' Parameter With rationalfit
	Data Analysis on S-parameters of RF Data Files
	Writing S2P Touchstone® Files
	Visualizing Mixer Spurs
	Finding Free IF Bandwidths
	De-Embedding S-Parameters
	Bisect S-Parameters of Cascaded Probes
	Designing Matching Networks for Low Noise Amplifiers
	Designing Matching Networks (Part 2: Single Stub Transmission Lines)
	Designing Broadband Matching Networks for Antennas
	Designing Broadband Matching Networks (Part 2: Amplifier)
	Impedance Matching of a Non-resonant(Small) Monopole
	RF Circuit Objects
	RF Data Objects
	Design IF Butterworth Bandpass Filter
	Passivity: Test, Visualize, and Enforce Passivity of rationalfit Output
	Design, Visualize and Explore Inverse Chebyshev filter - I
	Design, visualize and explore Inverse Chebyshev filter - II
	Design Matching Networks for Passive Multiport Network
	Frequency Sweeping the RF Budget Analysis
	Using Rational Object to Fit S-parameters
	Design Two-Stage Low Noise Amplifier Using Microstrip Transmission Line Matching Network
	RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF
	Analysis of Coplanar Waveguide Transmission line in X band application

